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Abstract

This lecture note is an overview of gravitational wave memory effects, delivered
at the HolographyCL Farewell Meeting in Viña del Mar, Chile in January 2025.

1 Introduction

Gravitational wave memory (GWM)1 refers to certain low-frequency features of gravita-
tional waves (GW) predicted by general relativity. As we will show, Einstein equations
entail a DC component in gravitational waves that is created in almost any radiative
process, making GWM a universal property of GWs. Universality, together with observ-
ability are among the main motivations to study this topic. There are, however, other
motivations such as potential astrophysical implications [].

An overview of GWM should consist, in my opinion, at least three topics:

1. Generation. Mathematical formulation of the memory produced in a dynamical
process. We will address this from two different perpectives: the perturbative approach
and the asymptotic analysis.

2. Detection. To find different experiments that capture persistent GW effects. The
displacement effect, i.e. a permanent change in the physical distance between two free
test masses is the classical example. But one should be creative and think of other
setups.

3. Interpretation. Universality of GWM, like other universal effects in physics can be
rooted to symmetries and conservation laws. Moreover, being a low-frequency feature
of GW, it is fundamentally related to soft theorems. I classify these considerations
as the interpretation of GWM. But actually, it is more that that, because this ap-
proach has motivated interesting developments in the first two topics, and provides
a framework to study and understand low-frequency GW effects in a unified manner.
Moreover, it can lead to important implications for holography and quantum gravity.

Due to limitations in time, we will restrict our attention to the first topic, i.e. the
generation of memory. I will hopefully talk about detection in another school! The
interpretation is already nicely covered by Strominger’s lecture notes [1].

1Some people might use the abbreviation GME standing for gravitational memory effect. However, I
would not waste a letter for “effect”, because all physics is about effects. Moreover, with GWM, I want
to insist that this is a subtopic in “gravitational wave theory”.
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Basic idea. GWM in linearized gravity is a direct consequence of the fact that the
initial configuration of the system is different from the final configuration. Think about a
classical scattering process, such as the hyperbolic encounter of two massive stars/black
holes. The produced waveform has a DC offset (constant shift), because the momenta of
the ingoing and outgoing particles are different, as we will see. More interestingly, general
relativity (GR) implies an additional memory, called the nonlinear memory, which is
sourced by the nonlinear interactions in the theory. This is also not surprising: the
square of an oscillatory function, has a non-oscillatory part, e.g. , sin2 φ = 1

2
− 1

2
cos(2φ).

We will see these ideas in concrete setup in the following.

Early works. Gravitational wave memory was found in linearized gravity in the 70s
and 80s in the works of Zel’dovich, Polnarev, Braginsky, Grishchuk, Thorne and oth-
ers [2–5]. In 1991, Christodoulou, who had proven the stability of Minkowski together
with Klainerman, used their machinary to make a novel prediction: the nonlinear mem-
ory effect [6]. Will and Wiseman showed that while the linear memory is the dominant
effect for unbound systems (scattering binaries), it is the nonlinear memory is the dom-
inant effect for bound systems (coalescing binaries). This is highly nontrivial, since the
nonlinear memory is sourced by O(G2) effects, which is subleading with respect to the
linear memory which appears at O(G) in a perturbative expansion. The dominance of
the nonlinear memory for bound orbits is due to the accumulation over the adiabatic
evolution of the binary.

In 1992, Blanchet and Damour formulated memory effects from a completely different
perspective: the perturbative post-Minkowskian formulation of GR, i.e. an expansion of
the metric in powers of the Newton’s constant2. They addressed not only the memory,
but a more general class of hereditary GW effects, which depend on the entire past history
of the system [7]. Examples of hereditary effects are the memory and tail effects. While
memory refers to a final DC offset (constant shift) in the waveform, tail refers to a slow
(power-law) decay in the waveform at late time.

While Blanchet and Damour found tail effects as a second-order effect in the PM
theory over Minkowski spacetime, tail effects also appear in a linear perturbation over a
curved background such as Schwarzschild or Kerr, which is thoroughly analyzed in black
hole perturbation theory [8, 9]. In this context, tail effect arises because of a branch-cut
in the Green function of the wave operator over the curved background. Finally, there
are recent developments on tail effects using scattering amplitude methods. A careful
comparison of these perspectives on low-frequency GW effects will be very fruitful.

2 Generation of GWM in perturbation theory

In this section, we will describe how GWM shows up in the post-Minkowskian formulation
of GR, i.e. an expansion of the metric in powers of the Newton’s constant. We will see
that GWM appears at both linear and second order, and the corresponding memory is
therefore called the linear and nonlinear memory effects.

We work with the gothic metric deviation defined as hµν =
√
|g|gµν−ηµν and satisfying

the de Donder (or harmonic) gauge condition ∂µh
µν = 0 in Cartesian coordinates (t, xi)

2Here is how the story began: one day, Thibault Damour brought a copy of the 1980 paper of Thorne []
to his new PhD student, Luc Blanchet, and asked him to extend it to the next order in the perturbation.
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in which ds2 = −dt2 + δijdx
idxj. The Einstein field equations in harmonic coordinates

read as

□hµν =
16πG

c4
|g|T µν + Λµν(h, ∂h, ∂2h) , (1)

where

Λαβ =− hµν∂µ∂νh
αβ +

1

2
∂αhµν∂

βhµν − 1

4
∂αh∂βh+ ∂νh

αµ
(
∂νhβµ + ∂µh

βν
)

− 2∂(αhµν∂
µhβ)ν + ηαβ

[
−1

4
∂τhµν∂

τhµν +
1

8
∂µh∂

µh+
1

2
∂µhντ∂

νhµτ
]
+O(h3)

(2)

Note that T µν = T µν [g;ψ] is a function of some matter source ψ (can be matter fields,
or effective point-particles). For example, if the stress tensor describes a set of point
particles, they follow geodesics, which crucially depends on the metric.

To solve Einstein equations, we consider a post-Minkowskian (PM) expansion of the
metric in powers of the Newton’s constant G,

hµν =
+∞∑
n=1

Gnhµνn . (3)

Inserting this into (1), one can solve the equations iteratively, i.e. order by order in powers
of G. We will first study the linear theory (1PM) and then second-order perturbations
(2PM).

We should stress that while Eistein equations imply (1), the reverse is not true. It
is the intersection of the solutions to (1) and the harmonic gauge condition ∂µh

µν = 0
which corresponds to a solution of Einstein equations (assuming that the PM expansion is
convergent). Therefore, (1) is called the relaxed Einstein equations. Moreover, taking the
divergence of (1), we observe that the harmonic gauge condition implies that ∂µT

µν
eff = 0,

where T µνeff is the rhs of (1). Therefore, harmonic gauge condition corresponds to the
conservation of the effective gravitational stress tensor.

2.1 Linear memory in classical scattering

At leading order in the PM expansion hµν = Ghµν1 . From the definition, one can check that
hµν1 is the trace-reversed metric perturbation, i.e. gµν = ηµν +G(hµν1 − 1

2
ηµνh(1))+O(G2)

where h(1) = ηµνh
µν
(1). Inserting (3) in (1), one obtains at leading order

□hµν1 =
16π

c4
T µν [η;ψ] , (4)

This can be solved given the Green function for the wave operator □, given by the
retarded Green function integral in Cartesian coordinates

hµν(x) =
16π

c4

∫
d4x′G(x, x′)T µν(x′) , G[x, y] =

1

2π
θ(x0 − y0)δ

(
|x− y|2

)
(5)

There are alternative ways to express the Green function, which can simplify the problem
for specific sources. We consider the source to be a set of scattering pointlike particles,
each described by the stress tensor

T µν [gµν , z
µ(τ)](x′) = m

∫
uµuν√
−g

δ(4) (x′α − zα(τ)) dτ, (6)
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Inserting (6) in (5), we find an expression involving
∫
dτδ (|x− z(τ)|2) which can be

worked out by the identity δ(f(x)) =
∑

i δ(x − xi)/f
′(xi) where xi are the roots of the

function f . We thus obtains the gravitational analogue of the Liénard–Wiechert potential

hµν1 (x) = −4m

c2
uµuν

uα (x− z)α

∣∣∣
t=tret

. (7)

where uµ = dzµ

dτ
is the velocity of the massive particle. At large distance, r ≡ |x| ≫ |z|,

hµν1 (t, r,n) = − 4

rc2
pµpν

k · p
+O(r−2) , (8)

where the momentum pµ = muµ on the rhs is evaluated at time u = t−r, and kµ = (1, ni)
is a null vector that specifies the location of the observer on the sphere.

The waveform, by definition is the 1/r term in the transverse-traceless projection
of the metric, and the memory is the difference between the final and initial value of
that quantity. For a scattering problem, the memory of the gravitational waveform, is
therefore3

∆gTT
ij (n) = lim

t→∞
(hij(t)− hij(−t))TT =

4G

r

∑
A

ηA

(
piAp

j
A

k · pA

)TT

(9)

where ηA = +1(−1) for outgoing (ingoing) particles and A sums over all constituents of
the scattering. This is the result of Braginsky and Thorne [3]. Here TT refers to the
“transverse-traceless” projection, using the projector

XTT
ij ≡⊥ijkl Xkl , ⊥ijkl=

1
2

(
⊥ik⊥jl + ⊥il⊥jk − ⊥ij⊥kl

)
, ⊥ij= δij − ninj .

Remark 1. As we mentioned before, solving the relaxed Einstein equations is not
enough; one has to enfore the harmonic gauge condition, which corresponds to the con-
servation of the effective stress tensor. At linear order in the PM expansion, one has
to impose ∂µT

µν [η, z(τ)] = 0, which implies an equation for the matter source. In fact,
it implies that the particles should move on the geodesics of the Minkowski metric, i.e.
straight lines. But this would imply that the scattering is trivial. In other words, lin-
earized Einstein equation cannot consistently describe the interaction between particles.
Therefore, one has two options. The hard choice is to solve the problem at a higher PM
order, which would provide with the worldline of the particles, as well as the radiated
GWs to the desired order, see e.g. [10] and references therein. The easy option, which is
what we have actually done here is to stick to the linearized theory, and solve the equa-
tions in two patches of spacetime, very early and very late in time, where the particles
are far enough, so that they effectively follow straight lines. As we saw in (9), we have
obtained the memory in terms of incoming and outgoing momenta, which are assumed to
be given, while following option 1 would additionally provide the final momenta in terms
of the initial momenta.

3The relative minus sign with respect to (8) is because gµν = ηµν−G(h
(1)
µν − 1

2h
(1)ηµν)+O(G2), where

indices on h
(1)
µν is lowered using the background metric ηµν .
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Remark 2. The Weinberg soft theorem states that the scattering amplitude of N par-
ticles with an additional soft graviton emission takes the universal form

MN+1(p1 · · · pn;ωqµ) = S0Mn(p1 · · · pn) , S0 =
∑
A

ηA
ϵµνp

µ
Ap

ν
A

ω q · pA
+O(logω) (10)

While this is a result in the frequency domain, the memory is obtained in the time
domain. Fourier transforming the 1/ω in the soft factor, we get a step function in the
time domain and this is the constant shift in the wave form, i.e. the memory. Moreover,
from the saddle-point approximation, the integral over the graviton momenta localizes qµ

to the observer direction kµ = (1,n). Finally, note an apparent tension: the above result
for the memory is obtained only at linear order, while the soft theorem is valid at all
orders in the perturbative expansion. One might worry that nonlinear corrections to the
memory break the above nice correspondence between memory and soft factor. We will
show in the following section that while there is a nonlinear correction to the memory,
it still takes the same form as (9) for a scattering process. One only needs to sum over
additional products that are produced through nonlinear interactions.

2.2 Second-order effect: non-linear memory

Let us now see what happens to the memory at second PM. From the linear analysis, we
found that at large distance

hµν1 =
1

r
h̄µν(u,n) +O(r−2).

It will be convenient to decouple constant Coulombic contributions from radiative fields
as follows:

h̄00 = −4
(
M + niP

i
)
+ z00 , h̄0i = −4P i + z00 , h̄ij = zij (11)

The effective stress tensor then takes the form

Λµν =
1

r2
Λµν2 (u,n) +O

(
r−3, G3

)
, Λµν2 = 4

(
M + niPi

)
z̈µν + kµkν F(u,n) . (12)

where Ẋ ≡ ∂X/∂u, and

F =
1

2
żµν żµν −

1

4
żµµż

ν
ν . (13)

In fact, it can be shown that F is flux of energy carried by GWs4

dEGW

dudΩ
=

G

16π
F(u,n) +O(G2) . (14)

Inserting (12) on the rhs of (1) and solving for h2, one finds [7]

hµν2 = hµν2

∣∣∣
mem

+ hµν2

∣∣∣
tail

+ instantaneous terms . (15)

4This can be shown either by using the Landau-Lifshitz pseudo tensor, or by showing that it matches
with the well-known Bondi energy flux.
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where

hTT
2ij

∣∣∣
mem

=
1

r

(∑
ℓ⩾2

2nL−2

(ℓ+ 1)(ℓ+ 2)

∫ u

−∞
dvFijL−2(v)

)TT

, (16)

where FL denotes the decomposition of F in STF harmonics

F(u,n) =
+∞∑
ℓ=0

nLFL(u) ⇔ FL(u) =
(2ℓ+ 1)!!

ℓ!

∫
dΩ

4π
n⟨L⟩F(u,n) . (17)

Eq. (16) is the nonlinear GWM to second PM order. The memory is clearly sourced by
the flux of energy through gravitational radiation at leading PM order.

Lemma. For unit vectors n,n′ representing two points on the sphere, the following
identity holds (see [11] for the proof)[

n′
in

′
j

1− n · n′

]TT

=

[
2

+∞∑
ℓ=2

(2ℓ+ 1)!!

(ℓ+ 2)!
nL−2 n̂

′
ijL−2

]TT

(18)

As a result of this lemma, one finds that

h2ij
TT
∣∣∣
mem

(u,n) = 4 ⊥ijkl

∫ u

−∞
du′
∫
dΩ′ n′kn′l

1− n · n′
dEGW

dΩ′ (u′,n′) , (19)

Thorne [5] pointed out that the nonlinear memory (19) is of the form of the linear memory
(9) once we replace the particle momentum with that of a gravitons generated in the

scattering process. One just needs to associate the momentum vector pµ = dEGW

dΩ
(1,n)

to the emitted graviton5. Therefore, the full memory to second order is still of the form
(9), but one has to sum over outgoing hard gravitons that are produced due to nonlinear
interactions.

2.3 Detour on tail effects

The second term in (15) reads

hµν2

∣∣∣
tail

=
2(M + niPi)

r

∫ u

−∞
dv ln

(
u− v

2b0

)
z̈µν(v,n) +O

(
1

r2

)
. (20)

where b0 is an irrelevant length scale to make the argument of the logarithm dimen-
sionless. Eq.(20) is called the tail effect and leads to a slow decay of the waveform. It
results from the coupling between the ADM conserved quantities M,P i and the gravita-
tional perturbation zµν , i.e. , the fact that the perturbation is propagating on a curved
background. The slow decay is because the graviton can back-scatter from the curved
background, and therefore arrive much later at null infinity.

5Thorne writes in [5]:“The main purpose of this paper is to show that Christodoulou’s effect, in fact,
is included in the general expression (1) for the memory, but the author had missed it there due to his
obtuseness.”
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Let us assume that linear waveform has compact support in time, i.e. żµν = 0 outside
the interval (u0, uf ). Then, an integration by part reveals

hµν2

∣∣∣
tail

=
2(M + niPi)

r

∫ uf

u0

dv
żµν(v,n)

u− v
+O

(
1

r2

)
. (21)

The behavior of this expression at late-time u ≫ uf can be obtained by expanding
1

u−u′ =
1
u

∑∞
n=0

(
u′

u

)n
in (21), and we find

hµν2

∣∣∣
tail

=
2(M + niPi)

r

∞∑
n=1

Mn (ż
µν
1 )

un
(22)

where Mn(f) =
∫ uf
u0
duun−1f(u) is the Melling transform of the linear waveform. There-

fore, the leading-order n = 1 tail effect decays as 1/u and is proportional to the linear
memory ∆hµν1 .

3 GWM from the asymptotic analysis

An alternative approach to derive memory effects is to use the asymptotic analysis. We
saw in the previous section that the memory was dependent merely on the ingoing and
outgoing state of the system, and not on the intermediate dynamics. We will make this
more rigorous in this section.

3.1 Asymptotics at null infinity

We saw that the harmonic coordinate system provides a powerful setup to study Ein-
stein equations perturbatively. However, they are not particularly suited to describe the
asymptotics. The reason is that the coordinate u = t − r diverges logarithmically from
the physical outgoing lightcones.

Instead, in Bondi coordinates, we let the radiative fields define the coordinate system
for us. To see how it works, consider a source emitting EM radiation. Using the Eikonal
method, we write the gauge field Aµ = aµe

iψ/ϵ, where ϵ ≪ 1 indicates that the phase
is a fast variable, while the amplitude aµ is a slow variable. Inserting this into Maxwell
equations outside the source ∇µF

µν = 0, we find at O(ϵ−2) that

gµνkµkν = 0 , kµ ≡ ∂µψ (23)

which explains that EM wavefronts described by ψ = const hypersurfaces are null and
therefore the phase ψ provides a null foliation of spacetime. By construction kν∇νkµ =
kν∇ν∇µψ = kν∇µ∇νψ = kν∇µkν = 0, which implies that kµ is the generator of null
geodesics along null hypersurfaces6. So why not take the scalar ψ as a coordinate variable?
We therefore define the Bondi time u = ψ, which is also called the eikonal phase as it
solves the eikonal equation gµν∂µu∂νu = 0. In this coordinate system kµ = (1,0), and
the eikonal equation implies guu = 0. We further define the angular coordinates θA to be

6At O(ϵ−1), we find that the polarization obeys kµ∇µf
ν = 0, where fν ≡ aν/|a|, i.e. that the

polarization is parallel transported along the ray.
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constant along the generators kµ ≡ gµνkν of the null cones, implying that kµ∂µθ
A = 0.

These imply that

guu = 0 = guA (24)

This is the (partial) Bondi gauge conditions. The general form of the metric in the
radiative gauge reads

ds2 = −e2βdu(Fdu− 2dr) + r2γAB(dθ
A − UAdu)(dθB − UBdu) (25)

We need to complete the gauge by imposing a condition on the parameter of the outgoing
null curves generated by kµ. Two important options are

• Define r to be the affine parameter along the outgoing null curves implying that
gur = −1 (Newman-Unti gauge)

• Define r to be the areal distance from the origin, implying that det(γAB) = det(qAB),
where qAB is the round metric on the unit sphere. (Bondi gauge)

With respect to the round metric qAB(θ
A) on the sphere with Ricci scalar R[q] = 2, we

can decompose γAB into a trace and a traceless part

γAB = ΩqAB + hAB , qABhAB = 0 (26)

From this, we find det(γ) = det(q)
(
Ω2 − 1

2
hABh

AB
)
. Imposing the Bondi gauge condition

implies that Ω =
√
1 + hABhAB/2, and thus the inverse γAB is given simply by γAB =

ΩqAB−hAB, where indices on the sphere are raised and lowered with the metric qAB and
its inverse qAB. Now, perform an asymptotic expansion of the metric

hAB =
1

r
CAB +

∞∑
n=3

1

rn
E

(n)
AB , (27)

insert it back in the metric and solve Einstein equations asymptotically. The result is

ds2 =− (1− 2m/r)du2 − 2dudr(1 +O(r−2)) + (DBC
AB +O(r−1))dudθA (28)

+ (r2qAB + rCAB +O(r−1))dθAdθB . (29)

with a constrain between the mass aspect m(u, θA) and the Bondi shear CAB(u, θ
A)

ṁ =
1

4
DADBĊ

AB − 1

8
ĊABĊAB (30)

where overdot refers to derivation wrt u. The Bondi shear CAB is the leading term in the
TT component of the metric, written in an angular basis CAB = reA

ieB
jgTT
ij . Therefore,

it represents the gravitational waveform. Also, qAB, DA are respectively the round metric
on the sphere and the corresponding covariant derivative. Integrating (30) over time and
rearranging implies

DADB∆C
AB = 4∆m+

1

2

∫ ∞

−∞
du ĊABĊAB (31)

We observe that we have an expression for the memory in terms of the angular energy
flux, and the total change in the Bondi mass aspect. However, there are two problem
here
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Q1: If I know CAB as a function of time, I can directly compute the memory ∆CAB.
Why should I do this mess to derive the memory?

Q2: The Bondi mass is an unknown of the Bondi analysis. How informative is this
equation?

Answer to Q1. The answer is best provided in the Fourier space. To simplify the
notation, we note that any STF tensor on the sphere has only two d.o.f, and thus can be
traded with a complex scalar. Given a null dyad mA, m̄A on the sphere, with m · m̄ = 1,
we define

C ≡ m̄Am̄BCAB ⇔ CAB = mAmBC + m̄Am̄BC̄ (32)

The complex functions C and its complex conjugate C̄ represent right and left-handed
polarization of the radiation field respectively. In Fourier form,

C(u, n) = i

∫ ∞

−∞

dω

2π
C(ω, n) e−iωu (33)

Therefore

∆C(n) =

∫ ∞

−∞
duĊAB = lim

ω→0
ωC(ω, n) (34)

1

2

∫ ∞

−∞
duĊABĊAB =

∫ ∞

0

dωω2C∗(ω, n)C(ω, n) (35)

From these two equations, we learn that the memory is directly related to zero frequency
modes, while the flux contains all the frequency spectrum (hard modes). In particular,
soft modes’ contribution to energy flux is vanishingly small. Note also that a nonzero
memory corresponds to a soft pole in the low-frequency expansion of the shear.

Another way to address this issue is to think about the PM expansion of this equation.
Since CAB ∼ O(G), the linear term is O(G), while the flux term is O(G2). Therefore, at
leading order, we can write

DADB∆C
AB
(1) = 4∆m(1) (36)

This reproduces the linear memory (9) for the scattering process, after replacing ∆m(1)

with its value, as discussed below. Moreover, one can argue that ∆m is O(G) exact, i.e.
∆m = G∆m(1). Therefore, at second order, we find

DADB∆C
AB
(2) =

1

2

∫ ∞

−∞
du ĊAB

(1) Ċ
(1)
AB . (37)

This is actually a rewriting of (16).

Both equations take the form DADBX
AB = F , where XAB is an STF tensor. This

equation can be solved as follows. First expand the STF tensor into its electric and
magnetic components as

XAB = DABX
+ + ϵA

CDBCX
− , DAB ≡ DADB − 1

2
qABD

2 (38)
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where D2 = qABDADB is the Laplacian on the sphere. Inserting back into the equation,
and some commutations of the derivatives implies

1

2
D2(D2 + 2)X+ = F (39)

which can be solved as X+ =
∫
S2 d

2Ω′G(n,n′)F (n′) with the Green function

G(n,n′) =
1

4π
x lnx, x = 1− n · n′ (40)

that solves

1

2
D2
(
D2 + 2

)
G (n,n′) =

1√
2
δ2 (θ, θ′)− 1

4π
(1 + 3n · n′) . (41)

Once X+ is solved, one can insert it back in (38) to find XAB. Of course, this equation
does not fix the magnetic part X−. In our problem, the magnetic memory ∆C− is
assumed to vanish, which is consistent with a large space of solutions.

Answer to Q2: Indeed, the asymptotic analysis at null infinity does not provide any
information about ∆m in terms of the source. To address Q2, we have to match the
analysis at null infinity to an asymptotic analysis at future timelike infinity. We will do
this in the following.

Minimal approach. Let us focus on a scattering problem. We assume that the system
is free/non-interacting in the far past and far future. A free particle with mass M and
velocity v is described by a boosted Schwarzschild solution. Transforming that into Bondi
form, one obtains

m =
M

γ3 (1− v · n)3
, γ(v) = (1− v2)−1/2, n⃗ · n⃗ = 1 (42)

Alternatively, one can start from Schwarzschild solution in Bondi coordinates, which
corresponds to a constant mass m = M . Then a boosted Schwarzschild is obtained
by acting a boost on this constant mass aspect. We know that infinitesimal Lorentz
transformations are described by a vector field on the celestial sphere

ξ = Y A∂A = (qABDBϕ+ εABDBψ)∂A , (43)

where ϕ = vini represents a boost with velocity v and ψ = ωini with an infinitesimal
rotation ω is the infinitesimal angular rotation vector. For the Schwarzschild solution
which corresponds to m = M and CAB = 0, the transformation of the mass aspect is
given by (see e.g. (2.23) of [12])

δYM =
3

2
MDAY

A =
3

2
MD2ϕ = −3Mv · n (44)

Indeed, (42) is the finite version of this infinitesimal transformation.

Since the system is asymptotically free at u→ ±∞, one can superpose (42) and find
that

m =
∑

A∈outgoing

MA

γ3A (1− vA · n)3
(45)
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This together with a similar analysis in the far past reveals and equation for ∆m in terms
of outgoing and ingoing massive particles

∆m =
∑
A

ηA
MA

γ3A (1− vA · n)3
(46)

where ηA = 1(−1) for outgoing (ingoing) particles.

3.2 Matching to future infinity

The more rigorous approach consists of matching our analysis at null infinity to an analysis
of future timelike infinity i+, on which the asymptotic state of massive degrees of freedom
live. This is what we do in the following.

On the Penrose diagram, future infinity i+ is singular. To study that region of space-
time, we have to resolve the singularity, by finding a coordinate system adapted to that
region of spacetime. In 1982, Beig and Schmidt [13] found a beautiful description of
spatial infinity, which can be applied to future timelike infinity with minimal changes.

Define the hyperbolic coordinate system (τ, ϕa) with a = 1, 2, 3 and impose the gauge
condition gτa = 0. Then we make an asymptotic expansion in the τ → ∞ limit to obtain

ds2 = −
(
1 + 2σ/τ +O(τ−2)

)
dτ 2 + τ 2

(
hab +

1

τ
(kab − 2khab) +O(log τ/τ 2)

)
dϕadϕb

(47)

Asymptotic analysis. We consider Einstein equations with a set of pointlike particles
as source, like the one in (6).

At leading order, Einstein equations imply that the three-dimensional metric hab has
to solve Rab = 2hab, i.e. Euclidean Einstein equation with cosmological constant Λ = 1.
A particular solution is the hyperbolic metric in global coordinates (ρ, θA)

habdϕ
adϕb = dρ2 + sinh2ρ (qAB dθ

AdθB) (48)

We define an asymptotically flat spacetime at timelike infinity to be a solution of Einstein
equations that asymptotes to hab in (48), as a fixed structure.

At subleading order, one obtains an equation for σ and another one for kab. The
former reads

(D2 − 3)σ =
N∑
n=1

4πMn
δ(3) (ϕ− ϕn)√

h
(49)

which can be solved by a suitable Green function of the hyperbolic Laplace equation (see
appendix A of [14] or appendix B of [15]). For a proper matching to I+, we choose the
Green function such that limρ→∞ σ = 0. With this condition, the unique solution to (49)
is [15]

σ =
N∑
n=1

Mn

(
2χn −

2χ2
n − 1√
χ2
n − 1

)
, χn = γn

(
cosh ρ− vinni sinh ρ

)
, (50)
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with the asymptotic behavior

σ ∼
N∑
n=1

−2Mn

γ3n (1− vinni)
3 e

−3ρ, ρ→ ∞ (51)

We thus impose as a matching condition between timelike and null infinity that

lim
u→∞

m(u,n) = lim
ρ→∞

e3ρσ(ρn) (52)

This reproduces the results of the previous section. It can also be derived by imposing that
the charge corresponding to supertranslations match at the intersection of the boundaries
of future timelike and null infinity. Note that a similar procedure at past timelike infinity
i− and assuming no-incoming radiation at I− reveals (46).
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