Holographic quantum matter

4. Planckian dynamics

Andrew Lucas
University of Colorado Boulder

Pontifical Catholic University of Chile
January 13, 2024

Holographic models give us good cartoons for quantum matter without quasiparticles.

Holographic models give us good cartoons for quantum matter without quasiparticles.

The physics of thermalization is captured by bulk fields "falling in" to a black hole horizon.

Holographic models give us good cartoons for quantum matter without quasiparticles.

The physics of thermalization is captured by bulk fields "falling in" to a black hole horizon.

More quantitatively, holographic methods lead to straightforward computation of dynamical response, such as conductivity $\sigma(\omega, k)$, in strongly correlated metallic phases.

Holographic models give us good cartoons for quantum matter without quasiparticles.

The physics of thermalization is captured by bulk fields "falling in" to a black hole horizon.

More quantitatively, holographic methods lead to straightforward computation of dynamical response, such as conductivity $\sigma(\omega, k)$, in strongly correlated metallic phases.
$\sigma \sim T^{\alpha}$ is not universal in finite-density holographic matter.

Kinetic theory of transport

Having seen transport in holographic models, let's now turn to standard kinetic theory of transport.

Kinetic theory of transport

Having seen transport in holographic models, let's now turn to standard kinetic theory of transport.

In a nutshell, we expect

$$
\rho=\frac{1}{\sigma}=\frac{m}{n e^{2} \tau}
$$

where m is effective quasiparticle mass (not generally well-defined), n is electron density, and

$$
\frac{1}{\tau}=\frac{1}{\tau_{\mathrm{el}-\mathrm{el}}}+\frac{1}{\tau_{\mathrm{el}-\mathrm{ph}}}+\frac{1}{\tau_{\mathrm{el}-\mathrm{imp}}}
$$

is the momentum-relaxing electron scattering rate.

Kinetic theory of transport

Having seen transport in holographic models, let's now turn to standard kinetic theory of transport.

In a nutshell, we expect

$$
\rho=\frac{1}{\sigma}=\frac{m}{n e^{2} \tau}
$$

where m is effective quasiparticle mass (not generally well-defined), n is electron density, and

$$
\frac{1}{\tau}=\frac{1}{\tau_{\mathrm{el}-\mathrm{el}}}+\frac{1}{\tau_{\mathrm{el}-\mathrm{ph}}}+\frac{1}{\tau_{\mathrm{el}-\mathrm{imp}}}
$$

is the momentum-relaxing electron scattering rate.

In an ordinary metal, we expect that:

$$
\frac{1}{\tau_{\mathrm{el}-\mathrm{el}}} \sim T^{2} \quad \frac{1}{\tau_{\mathrm{el}-\mathrm{ph}}} \sim\left\{\begin{array}{lll}
T^{d+2} & \text { low } T & \frac{1}{\tau_{\mathrm{el}-\mathrm{imp}}} \sim T^{0} \\
T & \text { high } T
\end{array}\right.
$$

Kinetic theory of transport

This kinetic theory of transport only makes sense if quasiparticle wave packets are well-defined, i.e. focus on length scales
$\ell \gg a \quad$ (lattice's unit cell size).

Kinetic theory of transport

This kinetic theory of transport only makes sense if quasiparticle wave packets are well-defined, i.e. focus on length scales

$$
\ell \gg a \quad \text { (lattice's unit cell size). }
$$

Calculate the mean free path between collisions, $\ell=v_{\mathrm{F}} \tau$. Kinetic theory only consisent if Mott-Ioffe-Regel bound holds:

$$
\ell \gg a .
$$

Kinetic theory of transport

This kinetic theory of transport only makes sense if quasiparticle wave packets are well-defined, i.e. focus on length scales

$$
\ell \gg a \quad \text { (lattice's unit cell size). }
$$

Calculate the mean free path between collisions, $\ell=v_{\mathrm{F}} \tau$. Kinetic theory only consisent if Mott-Ioffe-Regel bound holds:

$$
\ell \gg a .
$$

In e.g. alloy $\mathrm{Ti}_{1-x} \mathrm{Al}_{x}$, MIR bound works! [Mooij; Phys. Stat. Sol. A17 521 (1973)]

$$
\rho \lesssim \frac{m}{n e^{2}} \frac{v_{\mathrm{F}}}{a} \sim \frac{p_{\mathrm{F}}}{k_{\mathrm{F}}^{d} e^{2} a} \sim \frac{\hbar}{e^{2}} \frac{1}{k_{\mathrm{F}}^{d-1} a}
$$

Why does nature care about applicability of kinetic theory?

Planckian time scale

Conjecture: the time scale for thermalization in a physical system obeys

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T} .
$$

This is called the Planckian time scale.

Planckian time scale

Conjecture: the time scale for thermalization in a physical system obeys

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T} .
$$

This is called the Planckian time scale.

Idea: system can locally exchange $\Delta E \sim k_{\mathrm{B}} T$ with itself, and

$$
\Delta E \cdot \Delta t \sim k_{\mathrm{B}} T \cdot \tau \gtrsim \hbar
$$

Planckian time scale

Conjecture: the time scale for thermalization in a physical system obeys

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

This is called the Planckian time scale.

Idea: system can locally exchange $\Delta E \sim k_{\mathrm{B}} T$ with itself, and

$$
\Delta E \cdot \Delta t \sim k_{\mathrm{B}} T \cdot \tau \gtrsim \hbar
$$

In a CFT at finite T, the Planckian time scale is the only one, by dimensional analysis.

Planckian time scale

Conjecture: the time scale for thermalization in a physical system obeys

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

This is called the Planckian time scale.

Idea: system can locally exchange $\Delta E \sim k_{\mathrm{B}} T$ with itself, and

$$
\Delta E \cdot \Delta t \sim k_{\mathrm{B}} T \cdot \tau \gtrsim \hbar
$$

In a CFT at finite T, the Planckian time scale is the only one, by dimensional analysis.

In a metal, there are other energy scales ($E_{\mathrm{F}}!$). This is a non-trivial conjecture about many-body quantum systems.

Planckian dynamics in experiments

Many strongly correlated metals appear to have a quantum critical fan in the phase diagram:

In the quantum critical fan, one often finds
[Hartnoll, Mackenzie; Rev. Mod. Phys. 94041002 (2022)]

$$
\rho \sim \frac{m}{n e^{2}} \frac{k_{\mathrm{B}} T}{\hbar}
$$

Planckian dynamics in experiments

Many strongly correlated metals appear to have a quantum critical fan in the phase diagram:

In the quantum critical fan, one often finds
[Hartnoll, Mackenzie; Rev. Mod. Phys. 94041002 (2022)]

$$
\rho \sim \frac{m}{n e^{2}} \frac{k_{\mathrm{B}} T}{\hbar} .
$$

Similar scaling also holds in 2d semiconductors.
[Ahn, Das Sarma; Phys. Rev. B106 155427 (2022)]

Planckian dynamics in experiments

This Planckian scaling is highly universal across different materials, with very likely different microscopic origins for resistivity.

[Bruin, Sakai, Perry, Mackenzie; Science 339804 (2013)]

Planckian dynamics in experiments

Subtracting off impurity scattering (T-independent contribution), one finds Planckian resistivity to very low temperatures in magic angle twisted bilayer graphene. Unlikely that phonon scattering can explain.

[Jaoui++; Nature Phys. 18633 (2022)]

Planckian dynamics in experiments

A Planckian time scale also arises in optical conductivity of charge-neutral graphene.
[Gallagher++; Science 364125 (2019)]

Planckian dynamics in experiments

A Planckian time scale also arises in optical conductivity of charge-neutral graphene.
[Gallagher++; Science 364125 (2019)]

This case is not as mysterious - system is (a little) analogous to charge neutral CFT, where Planckian time scale is by default the only one that can show up.

Non-holographic Planckian dynamics

Some non-AdS/CMT theoretical observations of Planckian scaling:

- 1+1d CFT
- $2+1 \mathrm{~d}$ CFT
[Witczak-Krempa, Sorensen, Sachdev; Nature Phys. 10361 (2014)]
- critical Fermi surface (N fermions coupled to $\mathrm{U}(1)$ gauge field)
[Patel, Sachdev; PNAS 1141844 (2017)]

Non-holographic Planckian dynamics

Some non-AdS/CMT theoretical observations of Planckian scaling:

- 1+1d CFT
- $2+1 \mathrm{~d}$ CFT
[Witczak-Krempa, Sorensen, Sachdev; Nature Phys. 10361 (2014)]
- critical Fermi surface (N fermions coupled to $\mathrm{U}(1)$ gauge field)
[Patel, Sachdev; PNAS 1141844 (2017)]
- SYK models
[Maldacena, Stanford; Phys. Rev. D94 106002 (2016)]

In holographic models, the best way to see Planckian dynamics is to study quasinormal modes.

In holographic models, the best way to see Planckian dynamics is to study quasinormal modes.

Given bulk scalar equation

$$
\nabla_{a} \nabla^{a} \phi=m^{2} \phi=\frac{1}{\sqrt{-g}} \partial_{r}\left(\sqrt{-g} g^{r r} \partial_{r} \phi\right)+\omega^{2}\left|g^{t t}\right| \phi-k^{2} g^{x x} \phi
$$

for what (ω, k) is there an infalling solution

$$
\phi \sim \mathrm{e}^{\mathrm{i}(k x-\omega t)}\left[0 \cdot r^{d+1-\Delta}+r^{\Delta}+\cdots\right]
$$

which is not sourced?

In holographic models, the best way to see Planckian dynamics is to study quasinormal modes.

Given bulk scalar equation

$$
\nabla_{a} \nabla^{a} \phi=m^{2} \phi=\frac{1}{\sqrt{-g}} \partial_{r}\left(\sqrt{-g} g^{r r} \partial_{r} \phi\right)+\omega^{2}\left|g^{t t}\right| \phi-k^{2} g^{x x} \phi
$$

for what (ω, k) is there an infalling solution

$$
\phi \sim \mathrm{e}^{\mathrm{i}(k x-\omega t)}\left[0 \cdot r^{d+1-\Delta}+r^{\Delta}+\cdots\right]
$$

which is not sourced?

Study numerically in black hole (AdS-Schwarzchild) background:

$$
\mathrm{d} s^{2}=\frac{1}{r^{2}}\left[\frac{\mathrm{~d} r^{2}}{f(r)}-f(r) \mathrm{d} t^{2}+\mathrm{d} \mathbf{x}_{d}^{2}\right] .
$$

Quasinormal modes

In holography, one finds a discrete quasinormal mode spectrum: [Horowitz, Hubeny; Phys. Rev. D62 024027 (2000)]

$$
\omega_{n} \sim(\pm 1-\mathrm{i})(n+c) T \quad(n=0,1,2, \ldots)
$$

Quasinormal modes

In holography, one finds a discrete quasinormal mode spectrum: [Horowitz, Hubeny; Phys. Rev. D62 024027 (2000)]

$$
\omega_{n} \sim(\pm 1-\mathrm{i})(n+c) T \quad(n=0,1,2, \ldots)
$$

In field theory, we then expect:

$$
G_{\mathcal{O O}}^{\mathrm{R}} \sim \sum_{n} \frac{c_{n}}{\omega-\omega_{n}}
$$

implying that in real time,

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle \sim \mathrm{e}^{-c T t} \cos (c T t)
$$

This decays on the Planckian time scale!

Quasinormal modes

It is also useful to study how the spectrum of quasinormal modes changes in a field theory from weak to strong coupling: [Grozdanov, Kaplis, Starinets; JHEP 07151 (2016)]

strong coupling

Quasinormal modes

It is also useful to study how the spectrum of quasinormal modes changes in a field theory from weak to strong coupling: [Grozdanov, Kaplis, Starinets; JHEP 07151 (2016)]

zero coupling

strong coupling

Adding "weak coupling" corrections to holography, inspired by string theory, poles begin to cluster together and move towards $\operatorname{Im}\left(\omega_{n}\right) \rightarrow 0$.

Quasinormal modes

Similar phenomena hold for Lifshitz $(z>1)$ geometries!
[Sybesma, Vandoren; JHEP 05021 (2015)]

Similar phenomena hold for Lifshitz $(z>1)$ geometries!
[Sybesma, Vandoren; JHEP 05021 (2015)]

We saw before that "universal emblackening factor" captures $T \rightarrow 0$ black holes in AdS/CMT. Quasinormal modes very generically have Planckian decay!

Another universal Planckian time scale in holography arises in many-body chaos.

Chaos

Another universal Planckian time scale in holography arises in many-body chaos.

Consider a local operator A perturbing a quantum state.

Chaos

Another universal Planckian time scale in holography arises in many-body chaos.

Consider a local operator A perturbing a quantum state.

After time t, it's detected by local operators far away:

$$
[\mathcal{O}(x, t), A] \neq 0
$$

Out-of-time-ordered correlators quantify this. Intuitively,

$$
\operatorname{tr}\left([\mathcal{O}(x, t), A]^{2}\right) \rightarrow\langle\mathcal{O}(x, t) A \mathcal{O}(x, t) A\rangle_{\beta}
$$

Chaos

In holography, OTOCs of heavy operators are calculated by studying gravitational shockwaves near two-sided black hole horizons.
[Roberts, Shenker, Stanford; JHEP 03051 (2015)]

In holography, OTOCs of heavy operators are calculated by studying gravitational shockwaves near two-sided black hole horizons.
[Roberts, Shenker, Stanford; JHEP 03051 (2015)]

The physical outcome is that

$$
\left\langle\mathcal{O}_{0}(t) \mathcal{O}_{x} \mathcal{O}_{0}(t) \mathcal{O}_{x}\right\rangle_{\beta} \sim 1-\frac{1}{N^{2}} \mathrm{e}^{\lambda_{\mathrm{L}}\left(t-|x| / v_{\mathrm{B}}\right)}
$$

where Lyapunov exponent λ_{L} and butterfly velocity v_{B} are

$$
\lambda_{\mathrm{L}}=2 \pi T, \quad, v_{\mathrm{B}} \sim T^{1-1 / z} .
$$

The Lyapunov exponent

[Maldacena, Shenker, Stanford; JHEP 08106 (2016)]

$$
\lambda_{\mathrm{L}} \leq 2 \pi T
$$

obeys a bound (under mild physical assumptions). Holographic models are the "most chaotic" systems in nature?

The Lyapunov exponent
[Maldacena, Shenker, Stanford; JHEP 08106 (2016)]

$$
\lambda_{\mathrm{L}} \leq 2 \pi T
$$

obeys a bound (under mild physical assumptions). Holographic models are the "most chaotic" systems in nature?

In holographic models, $\lambda_{\mathrm{L}}=2 \pi T$ is a consequence of infalling geodesics near the horizon.

The Lyapunov exponent
[Maldacena, Shenker, Stanford; JHEP 08106 (2016)]

$$
\lambda_{\mathrm{L}} \leq 2 \pi T
$$

obeys a bound (under mild physical assumptions). Holographic models are the "most chaotic" systems in nature?

In holographic models, $\lambda_{\mathrm{L}}=2 \pi T$ is a consequence of infalling geodesics near the horizon.

The butterfly velocity
[Blake; Phys. Rev. Lett. 117091601 (2016)]
[Roberts, Swingle; Phys. Rev. Lett. 117091602 (2016)]

$$
v_{\mathrm{B}} \sim T^{1-1 / z}
$$

is also determined by physics at the horizon.

Diffusion bounds

So far, the Planckian rate T (or time T^{-1}) shows up in:

- black hole quasinormal modes, i.e.

$$
G_{\mathcal{O O}}^{\mathrm{R}}(t) \gtrsim \mathrm{e}^{-c T t} .
$$

- Lyaupunov time universally in holographic models.

Diffusion bounds

So far, the Planckian rate T (or time T^{-1}) shows up in:

- black hole quasinormal modes, i.e.

$$
G_{\mathcal{O O}}^{\mathrm{R}}(t) \gtrsim \mathrm{e}^{-c T t} .
$$

- Lyaupunov time
universally in holographic models.

Can we get resistivity $\rho \sim T$?

Diffusion bounds

So far, the Planckian rate T (or time T^{-1}) shows up in:

- black hole quasinormal modes, i.e.

$$
G_{\mathcal{O O}}^{\mathrm{R}}(t) \gtrsim \mathrm{e}^{-c T t}
$$

- Lyaupunov time universally in holographic models.

Can we get resistivity $\rho \sim T$?

Not generically. We've already seen that $\sigma_{\text {dc }}$ can have complicated T-dependence in holography.

One idea is that diffusion is bounded:
[Hartnoll; Nature Phys. 1154 (2015)]

$$
D \gtrsim \frac{v^{2}}{T} .
$$

Not obvious what v should be?

One idea is that diffusion is bounded:
[Hartnoll; Nature Phys. 1154 (2015)]

$$
D \gtrsim \frac{v^{2}}{T}
$$

Not obvious what v should be?

Diffusion and conductivity are related by Einstein relation:

$$
D=\sigma \chi
$$

and in experimental metals, $\chi \sim T^{0}$. So this could explain $\rho \sim T$.

Diffusion bounds

One idea is that diffusion is bounded:
[Hartnoll; Nature Phys. 1154 (2015)]

$$
D \gtrsim \frac{v^{2}}{T}
$$

Not obvious what v should be?

Diffusion and conductivity are related by Einstein relation:

$$
D=\sigma \chi
$$

and in experimental metals, $\chi \sim T^{0}$. So this could explain $\rho \sim T$.
σ is calculated near the horizon in holographic models, as is v_{B}, suggesting that

$$
D \sim \frac{v_{\mathrm{B}}^{2}}{T}
$$

is a generic holographic result.
[Blake; Phys. Rev. Lett. 117091601 (2016)]

Diffusion bounds

In many models one does find

$$
D \sim \frac{v_{\mathrm{B}}^{2}}{T}
$$

Usually in thermal diffusivity: [Blake; Phys. Rev. D94 086014 (2016)]

- AdS_{2} horizons (breakdown of naive scaling)
[Blake, Davison, Sachdev; Phys. Rev. D96 106008 (2017)]
- SYK chains [Gu, Qi, Stanford; JHEP 05125 (2017)]
- electron-phonon models
[Werman, Kivelson, Berg; 1705.07895]

Diffusion bounds

In many models one does find

$$
D \sim \frac{v_{\mathrm{B}}^{2}}{T}
$$

Usually in thermal diffusivity: [Blake; Phys. Rev. D94 086014 (2016)]

- AdS_{2} horizons (breakdown of naive scaling)
[Blake, Davison, Sachdev; Phys. Rev. D96 106008 (2017)]
- SYK chains [Gu, Qi, Stanford; JHEP 05125 (2017)]
- electron-phonon models
[Werman, Kivelson, Berg; 1705.07895]

But there are also some exceptions:

- holographic charge diffusion with certain exponents
[Davison, Gentle, Goutéraux; Phys. Rev. D100 086020 (2019)]
- spatial inhomogeneity
[Lucas, Steinberg; JHEP 10143 (2016)]

Planckian bounds in general?

Hard to find universal Planckian bounds:

- transport bounds will have exceptions:

$$
\rho \rightarrow \infty \text { near metal-insulator transition }
$$

- correlation function decay

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle \sim \mathrm{e}^{-t / \tau_{\mathrm{imp}}}
$$

could appear T-independent due to impurity scattering

Planckian bounds in general?

Hard to find universal Planckian bounds:

- transport bounds will have exceptions:

$$
\rho \rightarrow \infty \text { near metal-insulator transition }
$$

- correlation function decay

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle \sim \mathrm{e}^{-t / \tau_{\mathrm{imp}}}
$$

could appear T-independent due to impurity scattering

- Lyapunov exponent not well-defined in lattice models
[Kukuljan, Grozdanov, Prosen; Phys. Rev. B96 060301 (2017)]

Planckian bounds in general?

Hard to find universal Planckian bounds:

- transport bounds will have exceptions:

$$
\rho \rightarrow \infty \text { near metal-insulator transition }
$$

- correlation function decay

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle \sim \mathrm{e}^{-t / \tau_{\mathrm{imp}}}
$$

could appear T-independent due to impurity scattering

- Lyapunov exponent not well-defined in lattice models
[Kukuljan, Grozdanov, Prosen; Phys. Rev. B96 060301 (2017)]

Is there a Planckian bound on operator growth in effective low-energy subspace?
[Lucas; Phys. Rev. Lett. 122216601 (2019)]

Planckian bounds in general?

Hard to find universal Planckian bounds:

- transport bounds will have exceptions:

$$
\rho \rightarrow \infty \text { near metal-insulator transition }
$$

- correlation function decay

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle \sim \mathrm{e}^{-t / \tau_{\mathrm{imp}}}
$$

could appear T-independent due to impurity scattering

- Lyapunov exponent not well-defined in lattice models
[Kukuljan, Grozdanov, Prosen; Phys. Rev. B96 060301 (2017)]

Is there a Planckian bound on operator growth in effective low-energy subspace?
[Lucas; Phys. Rev. Lett. 122216601 (2019)]
Similar bounds exist in low density (of conserved charge) subspaces.
[Chen, Gu, Lucas; SciPost Phys. 9071 (2020)]

Thermalization

So far, we've mostly focused on probing systems near equilibrium...

Thermalization

So far, we've mostly focused on probing systems near equilibrium...

Perhaps where holography can be most useful is far from equilibrium dynamics.

Thermalization

So far, we've mostly focused on probing systems near equilibrium...

Perhaps where holography can be most useful is far from equilibrium dynamics.

Much of this work is inspired by heavy ion collisions, but might it be relevant in condensed matter settings too?

So far, we've mostly focused on probing systems near equilibrium...

Perhaps where holography can be most useful is far from equilibrium dynamics.

Much of this work is inspired by heavy ion collisions, but might it be relevant in condensed matter settings too?

Consider a quantum quench protocol, in which

$$
H(t)=H_{0} \Theta(-t)+H_{1} \Theta(+t)
$$

Suppose that for $t<0$,

$$
\left.|\psi(t<0)\rangle=\mid \text { g.s. of } H_{0}\right\rangle .
$$

What happens for $t>0$?

Thermalization

We propose that $|\psi(t<0)\rangle$ is a highly excited state of H_{1}, so it will look thermal for a local observable \mathcal{O} :

$$
\langle\psi(t)| \mathcal{O}|\psi(t)\rangle \sim \frac{\operatorname{tr}\left(\mathrm{e}^{-\beta H} \mathcal{O}\right)}{\operatorname{tr}\left(\mathrm{e}^{-\beta H}\right)}
$$

Thermalization

We propose that $|\psi(t<0)\rangle$ is a highly excited state of H_{1}, so it will look thermal for a local observable \mathcal{O} :

$$
\langle\psi(t)| \mathcal{O}|\psi(t)\rangle \sim \frac{\operatorname{tr}\left(\mathrm{e}^{-\beta H} \mathcal{O}\right)}{\operatorname{tr}\left(\mathrm{e}^{-\beta H}\right)}
$$

In holography, such thermal correlators suggest that the quench grows a black hole in the bulk!

We propose that $|\psi(t<0)\rangle$ is a highly excited state of H_{1}, so it will look thermal for a local observable \mathcal{O} :

$$
\langle\psi(t)| \mathcal{O}|\psi(t)\rangle \sim \frac{\operatorname{tr}\left(\mathrm{e}^{-\beta H} \mathcal{O}\right)}{\operatorname{tr}\left(\mathrm{e}^{-\beta H}\right)}
$$

In holography, such thermal correlators suggest that the quench grows a black hole in the bulk!

This can be studied using numerical general relativity!
[Chesler, Yaffe; Phys. Rev. Lett. 102211601 (2009)]

Thermalization

The AdS-Vaidya metric provides an analytically solvable model of black hole formation:
[Bhattacharyya, Minwalla; JHEP 09034 (2009)]

$$
\mathrm{d} s^{2}=\frac{1}{r^{2}}\left[-2 \mathrm{~d} r \mathrm{~d} v-\left(1-r^{d+1} F(v)\right) \mathrm{d} v^{2}+\mathrm{d}_{d}^{2}\right]
$$

Thermalization

The AdS-Vaidya metric provides an analytically solvable model of black hole formation:
[Bhattacharyya, Minwalla; JHEP 09034 (2009)]

$$
\mathrm{d} s^{2}=\frac{1}{r^{2}}\left[-2 \mathrm{~d} r \mathrm{~d} v-\left(1-r^{d+1} F(v)\right) \mathrm{d} v^{2}+\mathrm{d}_{d}^{2}\right]
$$

If $F=r_{0}^{-d-1}$ is a constant, this is AdS-Schwarzchild black hole in infalling coordinate:

$$
\mathrm{d} v=\mathrm{d} t+\frac{\mathrm{d} r}{1-\left(r / r_{0}\right)^{d+1}} .
$$

The AdS-Vaidya metric provides an analytically solvable model of black hole formation:
[Bhattacharyya, Minwalla; JHEP 09034 (2009)]

$$
\mathrm{d} s^{2}=\frac{1}{r^{2}}\left[-2 \mathrm{~d} r \mathrm{~d} v-\left(1-r^{d+1} F(v)\right) \mathrm{d} v^{2}+\mathrm{d} \mathbf{x}_{d}^{2}\right]
$$

If $F=r_{0}^{-d-1}$ is a constant, this is AdS-Schwarzchild black hole in infalling coordinate:

$$
\mathrm{d} v=\mathrm{d} t+\frac{\mathrm{d} r}{1-\left(r / r_{0}\right)^{d+1}}
$$

For v-dependent F, this metric describes a growing black hole!

The AdS-Vaidya metric provides an analytically solvable model of black hole formation:
[Bhattacharyya, Minwalla; JHEP 09034 (2009)]

$$
\mathrm{d} s^{2}=\frac{1}{r^{2}}\left[-2 \mathrm{~d} r \mathrm{~d} v-\left(1-r^{d+1} F(v)\right) \mathrm{d} v^{2}+\mathrm{d} \mathbf{x}_{d}^{2}\right]
$$

If $F=r_{0}^{-d-1}$ is a constant, this is AdS-Schwarzchild black hole in infalling coordinate:

$$
\mathrm{d} v=\mathrm{d} t+\frac{\mathrm{d} r}{1-\left(r / r_{0}\right)^{d+1}}
$$

For v-dependent F, this metric describes a growing black hole!

Our naive quench protocol suggests instant thermalization?

$$
F(v)=r_{0}^{-d-1} \Theta(v)
$$

Local correlators will abruptly relax at Planckian times.

When is holography useful?

Holographic models naturally give us:

- access to real time dynamics and transport
- in models without quasiparticles (i.e. strongly coupled) in a variety of interesting phases of quantum matter (including non-relativistic).

When is holography useful?

Holographic models naturally give us:

- access to real time dynamics and transport
- in models without quasiparticles (i.e. strongly coupled)
in a variety of interesting phases of quantum matter (including non-relativistic).

Holographic models are unlikely to "solve" any experimental puzzle (e.g. high- T_{c} superconductivity). But they might explain one aspect of such a puzzle...

When is holography useful?

Holographic models naturally give us:

- access to real time dynamics and transport
- in models without quasiparticles (i.e. strongly coupled)
in a variety of interesting phases of quantum matter (including non-relativistic).

Holographic models are unlikely to "solve" any experimental puzzle (e.g. high- T_{c} superconductivity). But they might explain one aspect of such a puzzle...

Planckian "bounds", or a lack thereof?:

- are best understood in holographic models

When is holography useful?

Holographic models naturally give us:

- access to real time dynamics and transport
- in models without quasiparticles (i.e. strongly coupled)
in a variety of interesting phases of quantum matter (including non-relativistic).

Holographic models are unlikely to "solve" any experimental puzzle (e.g. high- T_{c} superconductivity). But they might explain one aspect of such a puzzle...

Planckian "bounds", or a lack thereof?:

- are best understood in holographic models
- can be motivated non-holographically too!

When is holography useful?

Holographic models naturally give us:

- access to real time dynamics and transport
- in models without quasiparticles (i.e. strongly coupled)
in a variety of interesting phases of quantum matter (including non-relativistic).

Holographic models are unlikely to "solve" any experimental puzzle (e.g. high- T_{c} superconductivity). But they might explain one aspect of such a puzzle...

Planckian "bounds", or a lack thereof?:

- are best understood in holographic models
- can be motivated non-holographically too!
- are hinted at in experiment, and non-holographic theory

When is holography useful?

Holographic models naturally give us:

- access to real time dynamics and transport
- in models without quasiparticles (i.e. strongly coupled)
in a variety of interesting phases of quantum matter (including non-relativistic).

Holographic models are unlikely to "solve" any experimental puzzle (e.g. high- T_{c} superconductivity). But they might explain one aspect of such a puzzle...

Planckian "bounds", or a lack thereof?:

- are best understood in holographic models
- can be motivated non-holographically too!
- are hinted at in experiment, and non-holographic theory

Interplay between holographic and non-holographic thinking led to the most important impact of AdS/CMT in condensed matter.

Open directions?

AdS/CMT is a mature field. What's left?

Open directions?

AdS/CMT is a mature field. What's left?

A biased list...:

- quantum matter driven very far from equilibrium
- strong electric fields?
- phases that can't exist in equilibrium?
- connections with heavy ion collision/nuclear physics?

Open directions?

AdS/CMT is a mature field. What's left?
A biased list...:

- quantum matter driven very far from equilibrium
- strong electric fields?
- phases that can't exist in equilibrium?
- connections with heavy ion collision/nuclear physics?
- correlation functions at Planckian frequency/wave numbers in strongly correlated systems
[Huang, Lucas; SciPost Phys. 13004 (2022)]

Open directions?

AdS/CMT is a mature field. What's left?

A biased list...:

- quantum matter driven very far from equilibrium
- strong electric fields?
- phases that can't exist in equilibrium?
- connections with heavy ion collision/nuclear physics?
- correlation functions at Planckian frequency/wave numbers in strongly correlated systems
[Huang, Lucas; SciPost Phys. 13004 (2022)]
- emergence of RG flows at strong coupling?
[Huang, Sachdev, Lucas; Phys. Rev. Lett. 131141601 (2023)]

Open directions?

AdS/CMT is a mature field. What's left?
A biased list...:

- quantum matter driven very far from equilibrium
- strong electric fields?
- phases that can't exist in equilibrium?
- connections with heavy ion collision/nuclear physics?
- correlation functions at Planckian frequency/wave numbers in strongly correlated systems
[Huang, Lucas; SciPost Phys. 13004 (2022)]
- emergence of RG flows at strong coupling?
[Huang, Sachdev, Lucas; Phys. Rev. Lett. 131141601 (2023)]

Or, just as importantly, holography will be a good set of models for checking future conjectures/ideas about strongly correlated matter!

