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Recap 53
We can get:
I finite temperature
I finite density
I disordered...

phases of holographic matter by adding various fields/boundary
conditions in the bulk!

Linear response is easy to calculate!

ψ(r) = ψ0rd+z−∆−θ/2︸ ︷︷ ︸
source

+ ψ0r∆−θ/2︸ ︷︷ ︸
response

+ · · ·

Retarded Green’s functions obey infalling boundary conditions:

φbulk(r) ∼ (r0 − r)−iω/4πT .

U(1) conserved current Jµ dual to bulk gauge field Aa.
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Conductivity 54
This lecture is about transport, i.e. Ohm’s Law:

V = IR.

Prefer to use its local form:

J = σE.

In strongly correlated materials,

“Transport is the first thing to measure and the last thing to
understand.”

Because transport is a window into correlated? dynamics, which
unlike transport, need not be fixed by dimensional analysis!

Standard transport theory is Boltzmann kinetic theory, which assumes
quasiparticles exist. (More on these predictions in Lecture 4).
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Conductivity 55
The conductivity is formally defined as:

σ(ω, k) = 1

iω
[
GR

JxJx (ω, k)−GR
JxJx (0, k)

]
with the offset negligible (in holography!).

For most of the lecture, set k = 0.

Since current Jx is dual to gauge field Ax , we should look solve bulk
equations of motion subject to infalling boundary conditions:

Ax(r → 0) = ei(kx−ωt)
[
1 + GR

JxJx

rd−1

d − 1
+ · · ·

]
.
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Conductivity at charge neutrality 56
Let’s start simple: CFT in d = 2 (zero density). The holographic
model is

L = R − 2Λ− F2

4
,

with background

ds2 = dr2 − dt2 + dx2

r2
, A = 0.

Look for solution of the form A = Ax(r)e−iωtdx:

∂bFab =
1√
−g

∂b

(√
−ggacgbdFcd

)
= 0

(
∂2r + ω2

)
Ax = 0, Ax = eiωr .

The conductivity is dimensionless:

σ(ω) =
1

iω
· iω = 1.
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Conductivity at charge neutrality 57
For a general CFT in d = 2 at finite T ,

σ = f
( ω

T

)
by dimensional analysis. What’s F?

In theories with quasiparticles, one finds (ε small):

f
( ω

T

)
=

1

ε− i(ω/T)
.

In Einstein-Maxwell theory,
[Herzog, Kovtun, Sachdev, Son; Phys. Rev. D75 085020 (2007)]

f = 1.

This is by particle-vortex duality, or F → ∗F duality in the bulk.
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Conductivity at charge neutrality 58
A holographic model with f 6= 1:

[Myers, Sachdev, Singh; Phys. Rev. D83 066017 (2011)]

L = R − 2Λ− F2

4
+ γCabcdFabFcd .

with Cabcd the Weyl curvature tensor (∼ Rabcd + · · · ).

Numerical computations:
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Conductivity at charge neutrality 59
Such models can be used to analytically continue quantum Monte
Carlo data from imaginary to real time!

[Witczak-Krempa, Sorensen, Sachdev; Nature Phys. 10 361 (2014)]

High frequency data well captured by conformal perturbation theory!
[Lucas, Podolsky, Gazit, Witczak-Krempa; Phys. Rev. Lett. 118 056601 (2017)]
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Finite density 60
Conductivity of a metal, which has finite charge density ρ?

In the clean, continuum limit, 😢

σ(ω = 0) = ∞.

Think about Newton’s Law: (πi is momentum density)

d
dt

〈πi〉 = ρE i

This is also a Ward identity in quantum systems.

Diverging momentum density πi implies diverging current:

〈J i〉 ≈ χJ iπi

χπiπi
〈πi〉 = ρ

M
〈πi〉.
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Finite density 61
Let’s consider a finite ω regulator!

−iωπi = ρE i , J i =
ρ

M
πi .

We predict a coherent conductivity:

σ(ω → 0) =
ρ2

M

[
πδ(ω) +

i
ω

]
.

There’s in general also a subleading piece which is finite as ω → 0: the
incoherent conductivity:

σ(ω → 0) = σinc +
ρ2

M

[
πδ(ω) +

i
ω

]
.

These conclusions do not rely on Lorentz, Galilean, etc. symmetry.
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Finite density 62
The origin of σinc is the inequivalence between current J i and
momentum πi :

<latexit sha1_base64="giPfmG1TslFyed+OamY1DRhentQ="></latexit>

Px =

Z
d2p pxf(p)

<latexit sha1_base64="rP8W4lIeXRfyRGAemyh1bYyD7jc="></latexit>

Jx =

Z
d2p

@✏

@px
f(p)

We predict large incoherent conductivity in any Fermi liquid with
non-circular Fermi surface.

[Cook, Lucas; Phys. Rev. B99 235148 (2019)]



Momentum relaxation 63
Why do resistors exist when made out of metals?

σ <∞ because momentum isn’t conserved in real metals.
I disorder breaks translation invariance
I umklapp processes conserve crystal momentum, but don’t

conserve actual momentum

If momentum relaxation rate Γ is “small”, the coherent conductivity
gets a Drude peak:

σ(ω → 0) = σinc +
ρ2

M
1

Γ− iω
.

Drude model is a standard cartoon...formally it only applies for weak
momentum relaxation.
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Momentum relaxation 64
Add weak random-field disorder to momentum-conserving system:

H = Hclean +

∫
ddx h(x)O(x)

Using memory matrix methods:
[Hartnoll, Hofman; Phys. Rev. Lett. 108 241601 (2012)]

M · Γ =

∫
ddk
(2π)d |h(k)|

2k2x lim
ω→0

Im
[
GR

OO(ω, k)
]

ω
.

Applicable to QFTs for non-holographic correlated metals, e.g.
[Hartnoll, Mahajan, Punk, Sachdev; Phys. Rev. B89 155130 (2014)]

Can be derived holographically! [Lucas; JHEP 03 071 (2015)]
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Momentum relaxation 65
Although Drude peak is a common cartoon...not easy to find a
compelling fit for σ(ω) in experiment! This is because momentum
relaxation is not weak in most metals!

Drude in experiment on UPd2Al3: [Scheffler++; Nature 435 1135 (2005)]
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Linear axion model 66
Holography can implement momentum relaxation, even with spatial
homogeneity of the bulk geometry! [Andrade, Withers; JHEP 05 101 (2014)]

Study the linear axion model:

L = LEMD − 1

2

d∑
I=1

∂aχ
I∂aχI ,

with background
χI =

m√
2

xI .

Only ∂aχ
I couples to equations of motion, so they stay homogeneous!

The large m (strong momentum relaxation) limit is accessible. 👍
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Linear axion model 67
We can find black hole geometries at finite temperature, finite charge,
and finite m!

As a simple example, consider adding m 6= 0 to the AdS-RN
background. One finds:

ds2 = 1

r2

[
dr2

f (r)
− f (r)dt2 + dx2

d

]
with

f (r) = 1−
(
1 +

d − 1

d
r20µ2

)(
r
r0

)d+1

+
d − 1

d

(
r
r0

)2d
− m2r2

2d − 2
.



Linear axion model 68
dc conductivity can be calculated using membrane paradigm.

[Blake, Tong; Phys. Rev. D88 106004 (2013)]
[Donos, Gauntlett; JHEP 11 081 (2014)]

Apply electric field in the x-direction:

δAx = −Et + δÃx(r)

so that Fxt = E . Infalling boundary conditions imply:

δÃx(r) ≈ − E
4πT

log(r0 − r)

near the horizon r = r0.

Rotational symmetry allows us to also turn on the following bulk
perturbations:

δg̃tx(r), δg̃rx(r), δχ̃x(r).

Solve the coupled bulk equations of motion. 😩
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Linear axion model 69
Look for quantities independent of r :

0 = ∇a (Z(Φ)Fax) = ∂r
(√

−gZF rx) .

Evaluating the constant ZF rx near r = 0 (in AdS):

√
−gZF rx ≈

√
−ggrrgxxZ(0)∂rAx → ∂rAx

rd−2
∼ 〈J x〉.

Now evaluate current at horizon r = r0:

J ∼ Z
√
−ggrrgxx (∂rAx − gtt∂rAt g̃tx

)∣∣
r0

Infalling boundary conditions/other EOMs:

grr∂rAx |r=r0 ∼ E , Z
√
−ggrrgxx∂rAt

∣∣
r=r0 ∼ ρ, gttδg̃tx

∣∣
r=r0 ∼ ρE

rd
0 m2
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Linear axion model 70
The conductivity is given by

σdc =
Z(r0)
rd−2
0

+
4πρ2

rd
0 m2

.

T -dependence of σdc very sensitive to holographic model choices, such
as z and θ.

In these holographic models, even at m = ∞,

σdc ≥
Z(r0)
rd−2
0

.

Holographic correlated systems don’t have Anderson/localization
transitions. This conclusion holds even for inhomogeneous black holes.

[Grozdanov, Lucas, Sachdev, Schalm; Phys. Rev. Lett. 115 221601 (2015)]
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Linear axion model 71
It’s tempting to compare:

σdc =
Z(r0)
rd−2
0

+
4πρ2

rd
0 m2

vs. σdc = σinc +
ρ2

M
1

Γ− iω
.

For small m2, general (memory matrix) formalism confirms this.

However, at large m2, discrepancies! Explicit calculation:
[Davison, Goutéraux; JHEP 09 090 (2015)] [Blake; JHEP 09 010 (2015)]

σ(ω) 6= Z(r0)
rd−2
0

+
4πρ2

rd
0 m2 − iω(ε+ P)

.

The Drude weights themselves get corrections:
[Goutéraux, Shukla; 2309.04033]

σ(ω) = σinc +
(ρ+ m2λρ + · · · )2

(ε+ P)(c · m2 − iω)
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Spatially-resolved transport 72
It is also possible to probe finite k conductivity in experiments! For
example, local transport probes using NV-center magnetometry:
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Spatially-resolved transport 73
These experiments have detected viscous electron flow in
high-purity graphene:

σ(k → 0) ≈ ρ2

MΓ + ηk2 + · · ·
,

where η is shear viscosity.

The shape of current flow detects ohmic vs. viscous flow.
[Jenkins++; Phys. Rev. Lett. 129 087701 (2022)]
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Spatially-resolved transport 74
Hydrodynamics only makes sense on long length scales. Holography can
evaluate σ(k) at short length scales, when there are no quasiparticles.

In charge-neutral CFT in d = 2, [Huang, Lucas; SciPost Phys. 13 004 (2022)]

σ(k) ∼ e−#·|k|/T .

Heuristic algorithms predict space-resolved current flow profiles
through constrictions, based on σ(k).



Spatially-resolved transport 74
Hydrodynamics only makes sense on long length scales. Holography can
evaluate σ(k) at short length scales, when there are no quasiparticles.

In charge-neutral CFT in d = 2, [Huang, Lucas; SciPost Phys. 13 004 (2022)]

σ(k) ∼ e−#·|k|/T .

Heuristic algorithms predict space-resolved current flow profiles
through constrictions, based on σ(k).



Spatially-resolved transport 74
Hydrodynamics only makes sense on long length scales. Holography can
evaluate σ(k) at short length scales, when there are no quasiparticles.

In charge-neutral CFT in d = 2, [Huang, Lucas; SciPost Phys. 13 004 (2022)]

σ(k) ∼ e−#·|k|/T .

Heuristic algorithms predict space-resolved current flow profiles
through constrictions, based on σ(k).



Spatially-resolved transport 75
Prediction for seeing the “quantum critical” crossover in graphene
using ∼ 600 nm constriction: [Huang, Lucas; SciPost Phys. 13 004 (2022)]

Holographic fit describes change in charge-neutral transport in
graphene using one fit parameter:

`eff ∼
Ch̄vF
kBT

with C ≈ 5, compatible with optical data from graphene.
[Gallagher++; Science 364 125 (2019)]
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Shot noise 76
(Probe brane) holography has also been used to calculate shot noise,
or current fluctuations in a mesoscopic device. In d = 2:

[Sonner, Green; Phys. Rev. Lett. 109 091601 (2012)]〈
I (t)2

〉
∼ Lwidth ×

[
T4 + E2

]1/4
.

This has recently been used to fit to shot noise data in YbRh2Si2:
[Chen++; Science 382 907 (2023)]
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