Holographic quantum matter

2. Phases of matter

Andrew Lucas
University of Colorado Boulder

Pontifical Catholic University of Chile
January 12, 2024

Recap
 Gauge-gravity duality relates some non-quasiparticle theories to (semi)classical gravity in one higher dimension.

Recap

Gauge-gravity duality relates some non-quasiparticle theories to (semi)classical gravity in one higher dimension.

Field theory operators dual to bulk "sources":

scalar \mathcal{O} of dim. Δ	scalar ϕ with $m^{2}=\Delta(\Delta-d-1) / L^{2}$
conserved $\mathrm{U}(1)$ current J^{μ}	Maxwell $\mathrm{U}(1)$ gauge field A_{a}
conserved stress tensor $T^{\mu \nu}$	gravity with metric $g_{a b}$

Recap

Gauge-gravity duality relates some non-quasiparticle theories to (semi)classical gravity in one higher dimension.

Field theory operators dual to bulk "sources":

scalar \mathcal{O} of dim. Δ	scalar ϕ with $m^{2}=\Delta(\Delta-d-1) / L^{2}$
conserved $\mathrm{U}(1)$ current J^{μ}	Maxwell $\mathrm{U}(1)$ gauge field A_{a}
conserved stress tensor $T^{\mu \nu}$	gravity with metric $g_{a b}$

Boundary conditions on bulk fields correspond to external sources:

$$
\mathcal{L}_{\mathrm{QFT}}-h(x) \mathcal{O}(x) \rightarrow \phi(r \rightarrow 0, x) \sim r^{d+1-\Delta} h(x)
$$

Recap

Gauge-gravity duality relates some non-quasiparticle theories to (semi)classical gravity in one higher dimension.

Field theory operators dual to bulk "sources":

scalar \mathcal{O} of dim. Δ	scalar ϕ with $m^{2}=\Delta(\Delta-d-1) / L^{2}$
conserved $\mathrm{U}(1)$ current J^{μ}	Maxwell $\mathrm{U}(1)$ gauge field A_{a}
conserved stress tensor $T^{\mu \nu}$	gravity with metric $g_{a b}$

Boundary conditions on bulk fields correspond to external sources:

$$
\mathcal{L}_{\mathrm{QFT}}-h(x) \mathcal{O}(x) \rightarrow \phi(r \rightarrow 0, x) \sim r^{d+1-\Delta} h(x)
$$

The bulk geometry encodes the state of the field theory: finite temperature $T \rightarrow$ black hole at temp. T

AdS-RN black hole

Example: let's study minimal holographic model of matter at finite $\mathrm{U}(1)$ charge density.

AdS-RN black hole

Example: let's study minimal holographic model of matter at finite U(1) charge density.

Motivation: metals, which have conserved electron number $\mathrm{U}(1)$!

AdS-RN black hole

Example: let's study minimal holographic model of matter at finite $\mathrm{U}(1)$ charge density.

Motivation: metals, which have conserved electron number $U(1)$!

The minimal holographic theory has

- stress tensor $T^{\mu \nu} \rightarrow$ metric $g_{a b}$
- $\mathrm{U}(1)$ current $J^{\mu} \rightarrow$ gauge field A_{a}

AdS-RN black hole

Example: let's study minimal holographic model of matter at finite $\mathrm{U}(1)$ charge density.

Motivation: metals, which have conserved electron number $\mathrm{U}(1)$!

The minimal holographic theory has

- stress tensor $T^{\mu \nu} \rightarrow$ metric $g_{a b}$
- $\mathrm{U}(1)$ current $J^{\mu} \rightarrow$ gauge field A_{a}

Minimally coupled theory: Einstein-Maxwell theory:

$$
\mathcal{L}=R-2 \Lambda-\frac{F_{a b} F^{a b}}{4}
$$

with Maxwell flux $F_{a b}=\partial_{a} A_{b}-\partial_{b} A_{a}$.

AdS-RN black hole

Add finite density by finite chemical potential:

$$
A_{t}(r \rightarrow 0)=\mu-\rho \frac{r^{d-1}}{d-1}+\cdots
$$

AdS-RN black hole

Add finite density by finite chemical potential:

$$
A_{t}(r \rightarrow 0)=\mu-\rho \frac{r^{d-1}}{d-1}+\cdots
$$

Consistent solution: AdS-Reissner-Nordstrom black hole:
[Chamblin, Emparan, Johnson, Myers; Phys. Rev. D60 064018 (1999)]

$$
\begin{aligned}
A_{t} & =\mu\left(1-\left(\frac{r}{r_{0}}\right)^{d-1}\right) \\
\mathrm{d} s^{2} & =\frac{1}{r^{2}}\left[\frac{\mathrm{~d} r^{2}}{f(r)}-f(r) \mathrm{d} t^{2}+\mathrm{d} \mathbf{x}_{d}^{2}\right] \\
f(r) & =1-\left(1+\frac{d-1}{d} r_{0}^{2} \mu^{2}\right)\left(\frac{r}{r_{0}}\right)^{d+1}+\frac{d-1}{d}\left(\frac{r}{r_{0}}\right)^{2 d} .
\end{aligned}
$$

AdS-RN black hole

Field theory has charge density:

$$
\rho=(d-1) \frac{\mu}{r_{0}^{d-1}}
$$

AdS-RN black hole

Field theory has charge density:

$$
\rho=(d-1) \frac{\mu}{r_{0}^{d-1}}
$$

temperature

$$
T=\frac{1}{4 \pi r_{0}}\left[d+1-\frac{(d-1)^{2}}{d} r_{0}^{2} \mu^{2}\right],
$$

AdS-RN black hole

Field theory has charge density:

$$
\rho=(d-1) \frac{\mu}{r_{0}^{d-1}}
$$

temperature

$$
T=\frac{1}{4 \pi r_{0}}\left[d+1-\frac{(d-1)^{2}}{d} r_{0}^{2} \mu^{2}\right]
$$

and entropy density

$$
s=\frac{4 \pi}{r_{0}^{d}} \sim\left\{\begin{array}{ll}
T^{d} & T \gg \mu \\
\mu^{d} & T \ll \mu
\end{array} .\right.
$$

AdS-RN black hole

Field theory has charge density:

$$
\rho=(d-1) \frac{\mu}{r_{0}^{d-1}}
$$

temperature

$$
T=\frac{1}{4 \pi r_{0}}\left[d+1-\frac{(d-1)^{2}}{d} r_{0}^{2} \mu^{2}\right],
$$

and entropy density

$$
s=\frac{4 \pi}{r_{0}^{d}} \sim\left\{\begin{array}{ll}
T^{d} & T \gg \mu \\
\mu^{d} & T \ll \mu
\end{array} .\right.
$$

There's zero temperature entropy density?!

AdS-RN black hole

Field theory has charge density:

$$
\rho=(d-1) \frac{\mu}{r_{0}^{d-1}}
$$

temperature

$$
T=\frac{1}{4 \pi r_{0}}\left[d+1-\frac{(d-1)^{2}}{d} r_{0}^{2} \mu^{2}\right],
$$

and entropy density

$$
s=\frac{4 \pi}{r_{0}^{d}} \sim\left\{\begin{array}{ll}
T^{d} & T \gg \mu \\
\mu^{d} & T \ll \mu
\end{array} .\right.
$$

There's zero temperature entropy density?!

Similar phenomenon found in SYK models.
[Sachdev; Phys. Rev. X5 041025 (2015)]

AdS-RN black hole

When $T \ll \mu$, geometry looks like $\mathrm{AdS}_{2} \times \mathbb{R}^{d}$. For $r \approx r_{0}$, write

$$
\begin{gathered}
\zeta \approx \frac{r_{0}^{2}}{r_{0}-r}, \\
\mathrm{~d} s^{2} \approx \frac{L_{2}^{2}}{\zeta^{2}}\left[\frac{\mathrm{~d} \zeta^{2}}{f_{2}(\zeta)}-f_{2}(\zeta) \mathrm{d} t^{2}\right]+\frac{\mathrm{d} \mathrm{x}_{d}^{2}}{r_{0}^{2}}, \quad f_{2}(\zeta)=1-(2 \pi T \zeta)^{2} .
\end{gathered}
$$

$L_{2}<1$: AdS radius shrunk! (Important later.)

AdS-RN black hole

When $T \ll \mu$, geometry looks like $\operatorname{AdS}_{2} \times \mathbb{R}^{d}$. For $r \approx r_{0}$, write

$$
\begin{gathered}
\zeta \approx \frac{r_{0}^{2}}{r_{0}-r}, \\
\mathrm{~d} s^{2} \approx \frac{L_{2}^{2}}{\zeta^{2}}\left[\frac{\mathrm{~d} \zeta^{2}}{f_{2}(\zeta)}-f_{2}(\zeta) \mathrm{d} t^{2}\right]+\frac{\mathrm{d} \mathrm{x}_{d}^{2}}{r_{0}^{2}}, \quad f_{2}(\zeta)=1-(2 \pi T \zeta)^{2} .
\end{gathered}
$$

$L_{2}<1$: AdS radius shrunk! (Important later.)

The IR theory has non-relativistic scaling:

$$
\zeta \rightarrow \lambda \zeta, \quad t \rightarrow \lambda t, \quad x \rightarrow x .
$$

We'll call this $z=\infty$ later: "semi-local criticality".

AdS-RN black hole

When $T \ll \mu$, geometry looks like $\mathrm{AdS}_{2} \times \mathbb{R}^{d}$. For $r \approx r_{0}$, write

$$
\begin{gathered}
\zeta \approx \frac{r_{0}^{2}}{r_{0}-r}, \\
\mathrm{~d} s^{2} \approx \frac{L_{2}^{2}}{\zeta^{2}}\left[\frac{\mathrm{~d} \zeta^{2}}{f_{2}(\zeta)}-f_{2}(\zeta) \mathrm{d} t^{2}\right]+\frac{\mathrm{d} \mathrm{x}_{d}^{2}}{r_{0}^{2}}, \quad f_{2}(\zeta)=1-(2 \pi T \zeta)^{2} .
\end{gathered}
$$

$L_{2}<1$: AdS radius shrunk! (Important later.)

The IR theory has non-relativistic scaling:

$$
\zeta \rightarrow \lambda \zeta, \quad t \rightarrow \lambda t, \quad x \rightarrow x .
$$

We'll call this $z=\infty$ later: "semi-local criticality".

This is a quantum critical phase: no parameter was tuned to realize IR criticality.

IR spectral weight
 Are there observable signatures of IR physics?

Are there observable signatures of IR physics?

Consider a massive scalar in the AdS-RN background:

$$
\mathcal{L}=\cdots-\frac{1}{2} \partial_{a} \phi \partial^{a} \phi-\frac{m^{2}}{2} \phi^{2} .
$$

IR spectral weight

Are there observable signatures of IR physics?

Consider a massive scalar in the AdS-RN background:

$$
\mathcal{L}=\cdots-\frac{1}{2} \partial_{a} \phi \partial^{a} \phi-\frac{m^{2}}{2} \phi^{2} .
$$

In the $\operatorname{IR} \mathrm{AdS}_{2} \times \mathbb{R}^{d}$, we find $\phi(\zeta) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} \omega t}$ with

$$
\zeta^{2}\left[\partial_{\zeta}^{2}+\omega^{2}\right] \phi=\left(\frac{1}{4}+m_{\mathrm{eff}}(k)^{2}\right) \phi
$$

with

$$
m_{\mathrm{eff}}(k)^{2}=m^{2} L_{2}^{2}+k^{2} r_{0}^{2} L_{2}^{2} .
$$

We predict k-dependent critical exponents!
[Faulkner, Liu, McGreevy, Vegh; Phys. Rev. D83 125002 (2011)]

IR spectral weight

In "physics experiment", we'll measure correlation functions:

$$
G_{\mathcal{O O}}^{\mathrm{R}}(x, t)=\Theta(t) \cdot \mathrm{i}\langle[\mathcal{O}(x, t), \mathcal{O}(0,0)]\rangle
$$

IR spectral weight

In "physics experiment", we'll measure correlation functions:

$$
G_{\mathcal{O O}}^{\mathrm{R}}(x, t)=\Theta(t) \cdot \mathrm{i}\langle[\mathcal{O}(x, t), \mathcal{O}(0,0)]\rangle
$$

If we accessed only the $\mathrm{AdS}_{2} \times \mathbb{R}^{d}$ geometry, we'd find spectral weight at finite temperature:

$$
\lim _{\omega \rightarrow 0} \frac{\operatorname{Im}\left[G_{\mathcal{O O}}^{\mathrm{R}}(\omega, k)\right]_{\mathrm{IR}}}{\omega} \sim \omega^{2 \Delta_{k}-2} \sim T^{2 \Delta_{k}-2}
$$

IR spectral weight

In "physics experiment", we'll measure correlation functions:

$$
G_{\mathcal{O O}}^{\mathrm{R}}(x, t)=\Theta(t) \cdot \mathrm{i}\langle[\mathcal{O}(x, t), \mathcal{O}(0,0)]\rangle
$$

If we accessed only the $\mathrm{AdS}_{2} \times \mathbb{R}^{d}$ geometry, we'd find spectral weight at finite temperature:

$$
\lim _{\omega \rightarrow 0} \frac{\operatorname{Im}\left[G_{\mathcal{O} \mathcal{O}}^{\mathrm{R}}(\omega, k)\right]_{\mathrm{IR}}}{\omega} \sim \omega^{2 \Delta_{k}-2} \sim T^{2 \Delta_{k}-2}
$$

In holography, we measure correlators near the boundary $r=0$:

$$
\phi(r \rightarrow 0) \sim \mathrm{e}^{\mathrm{i}(k x-\omega t)}\left[r^{d+1-\Delta}+G_{\mathcal{O O}}^{\mathrm{R}}(\omega, k) r^{\Delta}+\cdots\right] .
$$

How is this not ruined by UV physics?

IR spectral weight

Idea: bulk equation of motion depends only on ω^{2} :

$$
\zeta^{2}\left[\partial_{\zeta}^{2}+\omega^{2}\right] \phi=m_{\mathrm{eff}}(k)^{2} \phi
$$

IR spectral weight

Idea: bulk equation of motion depends only on ω^{2} :

$$
\zeta^{2}\left[\partial_{\zeta}^{2}+\omega^{2}\right] \phi=m_{\mathrm{eff}}(k)^{2} \phi
$$

Taylor expand solution:

$$
\phi=\phi^{(0)}+\omega \phi^{(1)}+\omega^{2} \phi^{(2)}+\cdots .
$$

$\phi^{(0)}$ and $\phi^{(1)}$ come from $\omega=0$ equation,

IR spectral weight

Idea: bulk equation of motion depends only on ω^{2} :

$$
\zeta^{2}\left[\partial_{\zeta}^{2}+\omega^{2}\right] \phi=m_{\mathrm{eff}}(k)^{2} \phi
$$

Taylor expand solution:

$$
\phi=\phi^{(0)}+\omega \phi^{(1)}+\omega^{2} \phi^{(2)}+\cdots .
$$

$\phi^{(0)}$ and $\phi^{(1)}$ come from $\omega=0$ equation,

$$
\mathrm{UV}: r \lesssim r_{0}(1-\omega / T)
$$

$$
\begin{array}{rl}
\text { IR: } r \sim r_{0} & \overline{=} \\
r=r_{0} & r=0
\end{array}
$$

except close to the horizon, where impose infalling boundary conditions!

IR spectral weight

Idea: bulk equation of motion depends only on ω^{2} :

$$
\zeta^{2}\left[\partial_{\zeta}^{2}+\omega^{2}\right] \phi=m_{\mathrm{eff}}(k)^{2} \phi
$$

Taylor expand solution:

$$
\phi=\phi^{(0)}+\omega \phi^{(1)}+\omega^{2} \phi^{(2)}+\cdots
$$

$\phi^{(0)}$ and $\phi^{(1)}$ come from $\omega=0$ equation,

$$
\mathrm{UV}: r \lesssim r_{0}(1-\omega / T)
$$

except close to the horizon, where impose infalling boundary conditions!
We find that:
[Lucas; JHEP 03071 (2015)]

$$
\lim _{\omega \rightarrow 0} \frac{\operatorname{Im}\left[G_{\mathcal{O O}}^{\mathrm{R}}(\omega, k)\right]}{\omega}=\frac{1}{r_{0}^{d}} \phi^{(0)}\left(r=r_{0}, k\right)^{2}
$$

IR spectral weight

$\phi^{(0)}$ itself comes from matching IR and UV:

$$
\phi^{(0)}(r) \sim \begin{cases}\phi_{\text {not norm }}^{\mathrm{UV}}(r)+c_{1} \phi_{\mathrm{norm}}^{\mathrm{UV}}(r) & r \ll \mu^{-1} \\ c_{2} \phi_{\mathrm{reg} \mathrm{IR}}^{\mathrm{IR}}(r) & r \sim \mu^{-1}\end{cases}
$$

IR spectral weight

$\phi^{(0)}$ itself comes from matching IR and UV:

$$
\phi^{(0)}(r) \sim\left\{\begin{array}{ll}
\phi_{\text {not norm }}^{\mathrm{UV}}(r)+c_{1} \phi_{\text {norm }}^{\mathrm{UV}}(r) & r \ll \mu^{-1} \\
c_{2} \phi_{\text {regular }}^{\mathrm{IR}}(r) & r \sim \mu^{-1}
\end{array} .\right.
$$

$c_{1,2}$ fixed by matching ϕ, ϕ^{\prime} at $r \sim \mu^{-1}$.

IR spectral weight

$\phi^{(0)}$ itself comes from matching IR and UV:

$$
\phi^{(0)}(r) \sim\left\{\begin{array}{ll}
\phi_{\text {not norm }}^{\mathrm{UV}}(r)+c_{1} \phi_{\text {norm }}^{\mathrm{UV}}(r) & r \ll \mu^{-1} \\
c_{2} \phi_{\text {regular }}^{\mathrm{IR}}(r) & r \sim \mu^{-1}
\end{array} .\right.
$$

$c_{1,2}$ fixed by matching ϕ, ϕ^{\prime} at $r \sim \mu^{-1}$.
Susceptibility $\operatorname{Re}\left[G_{\mathcal{O O}}^{\mathrm{R}}\right]$ sensitive to UV scaling (c_{1}).

IR spectral weight

$\phi^{(0)}$ itself comes from matching IR and UV:

$$
\phi^{(0)}(r) \sim\left\{\begin{array}{ll}
\phi_{\text {not norm }}^{\mathrm{UV}}(r)+c_{1} \phi_{\text {norm }}^{\mathrm{UV}}(r) & r \ll \mu^{-1} \\
c_{2} \phi_{\mathrm{regular}}^{\mathrm{IR}}(r) & r \sim \mu^{-1}
\end{array} .\right.
$$

$c_{1,2}$ fixed by matching ϕ, ϕ^{\prime} at $r \sim \mu^{-1}$.
Susceptibility $\operatorname{Re}\left[G_{\mathcal{O O}}^{\mathrm{R}}\right]$ sensitive to UV scaling $\left(c_{1}\right)$.
Spectral weight $\operatorname{Im}\left[G_{\mathcal{O O}}^{\mathrm{R}}\right]$ sensitive to IR behavior:

$$
\begin{aligned}
\lim _{\omega \rightarrow 0} \frac{\operatorname{Im}\left[G_{\mathcal{O O}}^{\mathrm{R}}(\omega, k)\right]}{\omega} & =\frac{1}{r_{0}^{d}} \phi^{(0)}\left(r=r_{0}, k\right)^{2} \\
& =\frac{1}{r_{0}^{d}} \phi_{\text {regular }}^{\mathrm{IR}}\left(r=r_{0}, k\right)^{2}
\end{aligned}
$$

IR physics dominates the dissipative spectral weight.

Quantum critical phases?

Holography predicts a quantum critical phase. Critical exponents Δ_{k} depend continuously on parameter μ.

Quantum critical phases?

Holography predicts a quantum critical phase. Critical exponents Δ_{k} depend continuously on parameter μ.

Optical conductivity in BSCO with doping-dependent exponent?
[van Heumen++; Phys. Rev. B106 054515 (2022)]

Quantum critical phases?

Holography predicts a quantum critical phase. Critical exponents Δ_{k} depend continuously on parameter μ.

Optical conductivity in BSCO with doping-dependent exponent?
[van Heumen++; Phys. Rev. B106 054515 (2022)]

Such experiments are difficult! Real metals have competing effects, limited range of applicability, etc.

Where is the Fermi surface?

Our holographic model describes a compressible, charged phase of matter, e.g. a metal.

Where is the Fermi surface?

Our holographic model describes a compressible, charged phase of matter, e.g. a metal.

Where is the Fermi surface? :

Where is the Fermi surface?

Our holographic model describes a compressible, charged phase of matter, e.g. a metal.

Where is the Fermi surface? :

One answer: missing! Add bulk fermion operators.
[Cubrovic, Schalm, Zaanen; Science 325439 (2009)]
[Liu, McGreevy, Vegh; Phys. Rev. D83 065029 (2011)]

Where is the Fermi surface?

Our holographic model describes a compressible, charged phase of matter, e.g. a metal.

Where is the Fermi surface? :

One answer: missing! Add bulk fermion operators.
[Cubrovic, Schalm, Zaanen; Science 325439 (2009)]

$$
\text { [Liu, McGreevy, Vegh; Phys. Rev. D83 } 065029 \text { (2011)] }
$$

It's debatable whether the low energy effective theory of a holographic metal should have long-lived fermions, such as

$$
\operatorname{tr}[\Psi \Phi] .
$$

Fermi surface may also be "hidden behind the horizon".
[Sachdev; Phys. Rev. D86 126003 (2012)]

Superconductivity

Sometimes the metallic phase is unstable. Suppose we have a bulk scalar with

$$
m_{\mathrm{eff}}^{2}=m^{2} L_{2}^{2}+\cdots<-\frac{1}{4} \quad(\mathrm{BF} \text { bound })
$$

i.e. Δ_{k} is complex-valued.

Superconductivity

Sometimes the metallic phase is unstable. Suppose we have a bulk scalar with

$$
m_{\mathrm{eff}}^{2}=m^{2} L_{2}^{2}+\cdots<-\frac{1}{4} \quad(\mathrm{BF} \text { bound })
$$

i.e. Δ_{k} is complex-valued.

This implies an instability; the boson field will grow large and backreact on the geometry.

Superconductivity

Sometimes the metallic phase is unstable. Suppose we have a bulk scalar with

$$
m_{\mathrm{eff}}^{2}=m^{2} L_{2}^{2}+\cdots<-\frac{1}{4} \quad(\mathrm{BF} \text { bound })
$$

i.e. Δ_{k} is complex-valued.

This implies an instability; the boson field will grow large and backreact on the geometry.

This gives a holographic mechanism for phases with spontaneous symmetry breaking.

Superconductivity

Sometimes the metallic phase is unstable. Suppose we have a bulk scalar with

$$
m_{\mathrm{eff}}^{2}=m^{2} L_{2}^{2}+\cdots<-\frac{1}{4} \quad(\mathrm{BF} \text { bound })
$$

i.e. Δ_{k} is complex-valued.

This implies an instability; the boson field will grow large and backreact on the geometry.

This gives a holographic mechanism for phases with spontaneous symmetry breaking.

Onset of SSB is signaled by a (linear response) bulk mode ϕ which is unsourced and regular at the horizon.

Superconductivity

Consider a charged bulk scalar:

$$
\mathcal{L}=R-2 \Lambda-\frac{F^{2}}{4}-\left|\partial_{a} \phi-\mathrm{i} q A_{a} \phi\right|^{2}-m^{2}|\phi|^{2}
$$

In the AdS-RN background,

$$
m_{\mathrm{eff}}^{2}=m^{2} L_{2}^{2}-q^{2}\left|g^{t t}\right| A_{t}^{2}
$$

could get below the BF bound for $r \sim r_{0} \sim \mu^{-1}$ (if $\mu \ll T$).
[Hartnoll, Herzog, Horowitz; Phys. Rev. Lett. 101031601 (2008)]

Superconductivity

Consider a charged bulk scalar:

$$
\mathcal{L}=R-2 \Lambda-\frac{F^{2}}{4}-\left|\partial_{a} \phi-\mathrm{i} q A_{a} \phi\right|^{2}-m^{2}|\phi|^{2}
$$

In the AdS-RN background,

$$
m_{\mathrm{eff}}^{2}=m^{2} L_{2}^{2}-q^{2}\left|g^{t t}\right| A_{t}^{2}
$$

could get below the BF bound for $r \sim r_{0} \sim \mu^{-1}$ (if $\left.\mu \ll T\right)$.
[Hartnoll, Herzog, Horowitz; Phys. Rev. Lett. 101031601 (2008)]
The stable solution will have a non-trivial profile $\phi(r)$ for bulk scalar:

This is the holographic superconductor!

Superconductivity

Numerically solve linearized EOMs from high temperature to deduce the phase diagram for $d=2$:
[Denef, Hartnoll; Phys. Rev. D79 126008 (2009)]

Technically, this is a superfluid, not superconductor. No dynamical gauge fields in the boundary theory.

Technically, this is a superfluid, not superconductor. No dynamical gauge fields in the boundary theory.

Holography says there is a finite T superfluid in $d=2$, violating Mermin-Wagner Theorem?

Quasi-long-range order

Technically, this is a superfluid, not superconductor. No dynamical gauge fields in the boundary theory.

Holography says there is a finite T superfluid in $d=2$, violating Mermin-Wagner Theorem?

Quantum fluctuations in the bulk ($1 / N$ effects) are responsible for destroying long-range order: there's only 1 Goldstone but N^{2} other degrees of freedom!
[Anninos, Hartnoll, Iqbal; Phys. Rev. D82 066008 (2010)]

$$
\langle\bar{\phi} \phi\rangle \sim|x|^{-c / N^{2}}
$$

Quasi-long-range order

Technically, this is a superfluid, not superconductor. No dynamical gauge fields in the boundary theory.

Holography says there is a finite T superfluid in $d=2$, violating Mermin-Wagner Theorem?0

Quantum fluctuations in the bulk ($1 / N$ effects) are responsible for destroying long-range order: there's only 1 Goldstone but N^{2} other degrees of freedom!
[Anninos, Hartnoll, Iqbal; Phys. Rev. D82 066008 (2010)]

$$
\langle\bar{\phi} \phi\rangle \sim|x|^{-c / N^{2}}
$$

Like all cartoons, holography has limitations...

Scaling exponents

Another problem with the Einstein-Maxwell theory:

$$
s(T \rightarrow 0) \sim \mu^{d} \neq 0
$$

Scaling exponents

Another problem with the Einstein-Maxwell theory:

$$
s(T \rightarrow 0) \sim \mu^{d} \neq 0
$$

Address by going to Einstein-Maxwell-dilaton gravity:

$$
\mathcal{L}=R-Z(\Phi) \frac{F^{2}}{4}-2(\partial \Phi)^{2}-V(\Phi)
$$

The scalar dilaton Φ will be part of the background.
[Charmousis, Gouteraux, Kim, Kiritsis, Meyer; JHEP 11032 (2010)]
[Huijse, Sachdev, Swingle; Phys. Rev. B85 035121 (2012)]

Scaling exponents

Another problem with the Einstein-Maxwell theory:

$$
s(T \rightarrow 0) \sim \mu^{d} \neq 0
$$

Address by going to Einstein-Maxwell-dilaton gravity:

$$
\mathcal{L}=R-Z(\Phi) \frac{F^{2}}{4}-2(\partial \Phi)^{2}-V(\Phi)
$$

The scalar dilaton Φ will be part of the background.
[Charmousis, Gouteraux, Kim, Kiritsis, Meyer; JHEP 11032 (2010)]
[Huijse, Sachdev, Swingle; Phys. Rev. B85 035121 (2012)]
In string theory models of holography, e^{Φ} represents the size of the compact dimensions, and one expects:

$$
Z(\Phi) \sim Z_{0} \mathrm{e}^{\alpha \Phi}, \quad V(\Phi)=-V_{0} \mathrm{e}^{\beta \Phi} .
$$

Scaling exponents

A family of charged black hole solutions:

$$
\begin{aligned}
\Phi(r) & \sim \log r, \\
A_{t}(r) & \sim r^{\theta-d-z}, \\
\mathrm{~d} s^{2} & \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}+\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}-\frac{\mathrm{d} t^{2}}{r^{2 z}}\right) .
\end{aligned}
$$

Scaling exponents

A family of charged black hole solutions:

$$
\begin{aligned}
\Phi(r) & \sim \log r \\
A_{t}(r) & \sim r^{\theta-d-z} \\
\mathrm{~d} s^{2} & \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}+\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}-\frac{\mathrm{d} t^{2}}{r^{2 z}}\right) .
\end{aligned}
$$

z and θ characterize non-relativistic quantum criticality.

Scaling exponents

A family of charged black hole solutions:

$$
\begin{aligned}
\Phi(r) & \sim \log r \\
A_{t}(r) & \sim r^{\theta-d-z} \\
\mathrm{~d} s^{2} & \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}+\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}-\frac{\mathrm{d} t^{2}}{r^{2 z}}\right) .
\end{aligned}
$$

z and θ characterize non-relativistic quantum criticality.

Bottom-up holography: use this geometry/EMD model, whether or not it's a consistent truncation of known string theory.

Scaling exponents

A family of charged black hole solutions:

$$
\begin{aligned}
\Phi(r) & \sim \log r, \\
A_{t}(r) & \sim r^{\theta-d-z}, \\
\mathrm{~d} s^{2} & \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}+\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}-\frac{\mathrm{d} t^{2}}{r^{2 z}}\right) .
\end{aligned}
$$

z and θ characterize non-relativistic quantum criticality.

Bottom-up holography: use this geometry/EMD model, whether or not it's a consistent truncation of known string theory.

Top-down holography: truncate string theory.

Scaling exponents

A family of charged black hole solutions:

$$
\begin{aligned}
\Phi(r) & \sim \log r, \\
A_{t}(r) & \sim r^{\theta-d-z}, \\
\mathrm{~d} s^{2} & \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}+\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}-\frac{\mathrm{d} t^{2}}{r^{2 z}}\right) .
\end{aligned}
$$

z and θ characterize non-relativistic quantum criticality.

Bottom-up holography: use this geometry/EMD model, whether or not it's a consistent truncation of known string theory.

Top-down holography: truncate string theory.

Can also build interpolating geometries between $(z, \theta)_{\mathrm{UV}}$ and $(z, \theta)_{\mathrm{IR}}$.

Scaling exponents

The z is the Lifshitz/dynamical critical exponent. It characterizes the relative scaling of time and space:

$$
[t]=z[x] .
$$

Scaling exponents

The z is the Lifshitz/dynamical critical exponent. It characterizes the relative scaling of time and space:

$$
[t]=z[x]
$$

θ is the hyperscaling-violating exponent:

$$
\left[T^{t t}\right]=z+d-\theta
$$

acting as anomalous dimension of energy density.

Scaling exponents

The z is the Lifshitz/dynamical critical exponent. It characterizes the relative scaling of time and space:

$$
[t]=z[x] .
$$

θ is the hyperscaling-violating exponent:

$$
\left[T^{t t}\right]=z+d-\theta
$$

acting as anomalous dimension of energy density.

Fermi liquid theory of metals: $z=1$ and $\theta=d-1$.

Scaling exponents

The z is the Lifshitz/dynamical critical exponent. It characterizes the relative scaling of time and space:

$$
[t]=z[x]
$$

θ is the hyperscaling-violating exponent:

$$
\left[T^{t t}\right]=z+d-\theta
$$

acting as anomalous dimension of energy density.
Fermi liquid theory of metals: $z=1$ and $\theta=d-1$.

Null energy condition in bulk, (near) area-law entanglement:

$$
\begin{aligned}
& z \geq 1+\frac{\theta}{d} \\
& \theta \leq d-1
\end{aligned}
$$

Scaling exponents

The z is the Lifshitz/dynamical critical exponent. It characterizes the relative scaling of time and space:

$$
[t]=z[x] .
$$

θ is the hyperscaling-violating exponent:

$$
\left[T^{t t}\right]=z+d-\theta
$$

acting as anomalous dimension of energy density.

Fermi liquid theory of metals: $z=1$ and $\theta=d-1$.

Null energy condition in bulk, (near) area-law entanglement:

$$
\begin{aligned}
& z \geq 1+\frac{\theta}{d} \\
& \theta \leq d-1
\end{aligned}
$$

Are these more general than holography?

Scaling exponents

Universal low temperature black hole metric:

$$
\mathrm{d} s^{2} \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}}{r^{2} f(r)}-f(r) \frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}\right)
$$

with

$$
f(r)=1-\left(\frac{r}{r_{0}}\right)^{d+z-\theta}, \quad r_{0} \sim T^{-1 / z}
$$

Scaling exponents

Universal low temperature black hole metric:

$$
\mathrm{d} s^{2} \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}}{r^{2} f(r)}-f(r) \frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}\right)
$$

with

$$
f(r)=1-\left(\frac{r}{r_{0}}\right)^{d+z-\theta}, \quad r_{0} \sim T^{-1 / z}
$$

As $T \rightarrow 0$, this form of $f(r)$ will arise in general holographic matter. (Some) low T physics will be highly universal!

Scaling exponents

Universal low temperature black hole metric:

$$
\mathrm{d} s^{2} \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}}{r^{2} f(r)}-f(r) \frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}\right)
$$

with

$$
f(r)=1-\left(\frac{r}{r_{0}}\right)^{d+z-\theta}, \quad r_{0} \sim T^{-1 / z}
$$

As $T \rightarrow 0$, this form of $f(r)$ will arise in general holographic matter. (Some) low T physics will be highly universal!

At low temperatures the entropy scales as

$$
s \sim \frac{1}{r_{0}^{d}} \sim T^{(d-\theta) / z}
$$

Scaling exponents

Universal low temperature black hole metric:

$$
\mathrm{d} s^{2} \sim r^{2 \theta / d}\left(\frac{\mathrm{~d} r^{2}}{r^{2} f(r)}-f(r) \frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{\mathrm{d} \mathbf{x}_{d}^{2}}{r^{2}}\right)
$$

with

$$
f(r)=1-\left(\frac{r}{r_{0}}\right)^{d+z-\theta}, \quad r_{0} \sim T^{-1 / z}
$$

As $T \rightarrow 0$, this form of $f(r)$ will arise in general holographic matter. (Some) low T physics will be highly universal!

At low temperatures the entropy scales as

$$
s \sim \frac{1}{r_{0}^{d}} \sim T^{(d-\theta) / z}
$$

Einstein-Maxwell had $z=\infty$, so $s \sim T^{0}$.

Scaling exponents

The EMD geometries also have an anomalous charge density exponent:

$$
\left[J^{t}\right]=d-\theta+\Phi .
$$

Scaling exponents

The EMD geometries also have an anomalous charge density exponent:

$$
\left[J^{t}\right]=d-\theta+\Phi .
$$

In EMD models, $\Phi=z$. This ensures that J^{t} is marginal in the (IR) scaling theory.
[Davison, Gouteraux, Hartnoll; JHEP 10112 (2015)]

Scaling exponents

The EMD geometries also have an anomalous charge density exponent:

$$
\left[J^{t}\right]=d-\theta+\Phi .
$$

In EMD models, $\Phi=z$. This ensures that J^{t} is marginal in the (IR) scaling theory.
[Davison, Gouteraux, Hartnoll; JHEP 10112 (2015)]

This violates lore that J^{t} cannot pick up anomalous dimension, because $\partial_{\mu}-\mathrm{i} q A_{\mu}$ must have well-defined dimension?
[Wen; Phys. Rev. B46 2655 (1992)]

Scaling exponents

The EMD geometries also have an anomalous charge density exponent:

$$
\left[J^{t}\right]=d-\theta+\Phi .
$$

In EMD models, $\Phi=z$. This ensures that J^{t} is marginal in the (IR) scaling theory.
[Davison, Gouteraux, Hartnoll; JHEP 10112 (2015)]

This violates lore that J^{t} cannot pick up anomalous dimension, because $\partial_{\mu}-\mathrm{i} q A_{\mu}$ must have well-defined dimension?
[Wen; Phys. Rev. B46 2655 (1992)]
$\Phi \neq 0$ (and $\theta<0$) may be large- N artifacts, with e.g. spectra of field mass/charge.

Scaling exponents

Non-relativistic holography has analogous dictionary. Adding scalar

$$
\mathcal{L}=\mathcal{L}_{\mathrm{EMD}}-\frac{1}{2}(\partial \psi)^{2}-\frac{1}{2} B_{0} \mathrm{e}^{\beta \Phi} \psi^{2},
$$

the choice of B_{0} determines operator dimension:
[Lucas, Sachdev, Schalm; Phys. Rev. D89 066018 (2014)]

$$
\psi(r)=\underbrace{\psi_{0} r^{d+z-\Delta-\theta / 2}}_{\text {source }}+\underbrace{\psi_{0} r^{\Delta-\theta / 2}}_{\text {response }}+\cdots
$$

Here the operator dimension is defined as

$$
\langle\mathcal{O}(x, 0) \mathcal{O}(y, 0)\rangle \sim \frac{1}{|x-y|^{2 \Delta}}
$$

Random-field disorder

Holography is helpful for tackling quantum field theory with random-field disorder:

$$
\mathcal{L}=\mathcal{L}_{\mathrm{QFT}}-h(x) \mathcal{O}(x, t),
$$

with time-independent, quenched disorder:

$$
\overline{h(x)}=0, \quad \overline{h(x) h(y)}=D \delta^{(d)}(x-y) .
$$

Random-field disorder

Holography is helpful for tackling quantum field theory with random-field disorder:

$$
\mathcal{L}=\mathcal{L}_{\mathrm{QFT}}-h(x) \mathcal{O}(x, t),
$$

with time-independent, quenched disorder:

$$
\overline{h(x)}=0, \quad \overline{h(x) h(y)}=D \delta^{(d)}(x-y) .
$$

In QFT, one uses a replica method to deal with disorder:

$$
\mathcal{L} \rightarrow \sum_{a=1}^{n} \mathcal{L}_{\mathrm{QFT}, a}-D \sum_{a, b=1}^{n} \mathcal{O}_{a}(x) \int \mathrm{d} t \mathcal{O}_{b}(x, t)
$$

There are $n \rightarrow 0$ copies of the physical theory!

Random-field disorder

Holography is helpful for tackling quantum field theory with random-field disorder:

$$
\mathcal{L}=\mathcal{L}_{\mathrm{QFT}}-h(x) \mathcal{O}(x, t),
$$

with time-independent, quenched disorder:

$$
\overline{h(x)}=0, \quad \overline{h(x) h(y)}=D \delta^{(d)}(x-y) .
$$

In QFT, one uses a replica method to deal with disorder:

$$
\mathcal{L} \rightarrow \sum_{a=1}^{n} \mathcal{L}_{\mathrm{QFT}, a}-D \sum_{a, b=1}^{n} \mathcal{O}_{a}(x) \int \mathrm{d} t \mathcal{O}_{b}(x, t)
$$

There are $n \rightarrow 0$ copies of the physical theory!

In holography, no replicas; but disordered boundary conditions:

$$
\psi(r \rightarrow 0, x)=h(x) r^{d+z-\Delta-\theta / 2}+\cdots
$$

Find the resulting inhomogeneous black hole!

Let $[x]=-1$. Then if $[\mathcal{O}]=\Delta$,

$$
[D]=d-\theta+z-2 \Delta .
$$

Let $[x]=-1$. Then if $[\mathcal{O}]=\Delta$,

$$
[D]=d-\theta+z-2 \Delta .
$$

We see that $[D]=2 \nu$ if we write

$$
\Delta=\frac{d-\theta}{2}+z-\nu
$$

Random-field disorder

Let $[x]=-1$. Then if $[\mathcal{O}]=\Delta$,

$$
[D]=d-\theta+z-2 \Delta .
$$

We see that $[D]=2 \nu$ if we write

$$
\Delta=\frac{d-\theta}{2}+z-\nu
$$

Harris relevant	$\nu>0$
Harris marginal	$\nu=0$
Harris irrelevant	$\nu<0$

[Harris; J. Phys. C7 1671 (1974)]
[Lucas, Sachdev, Schalm; Phys. Rev. D89 066018 (2014)]

Random-field disorder

Let $[x]=-1$. Then if $[\mathcal{O}]=\Delta$,

$$
[D]=d-\theta+z-2 \Delta .
$$

We see that $[D]=2 \nu$ if we write

$$
\Delta=\frac{d-\theta}{2}+z-\nu
$$

Harris relevant	$\nu>0$
Harris marginal	$\nu=0$
Harris irrelevant	$\nu<0$

[Harris; J. Phys. C7 1671 (1974)]
[Lucas, Sachdev, Schalm; Phys. Rev. D89 066018 (2014)]

Harris marginal (or relevant!) disorder could change IR fixed point.

Let's study $d=1, z=1, \theta=0$, with Harris marginal disorder $\nu=0$.

$$
S=\int \mathrm{d}^{3} x \sqrt{-g}\left(R+2-\frac{1}{2}(\partial \psi)^{2}+\frac{3}{4} \psi^{2}\right) .
$$

Let's study $d=1, z=1, \theta=0$, with Harris marginal disorder $\nu=0$.

$$
S=\int \mathrm{d}^{3} x \sqrt{-g}\left(R+2-\frac{1}{2}(\partial \psi)^{2}+\frac{3}{4} \psi^{2}\right) .
$$

Claim: there is a line of Lifshitz fixed points in the IR with

$$
z_{*}=1+\frac{D}{8}, \quad \theta_{*}=0 .
$$

Let's study $d=1, z=1, \theta=0$, with Harris marginal disorder $\nu=0$.

$$
S=\int \mathrm{d}^{3} x \sqrt{-g}\left(R+2-\frac{1}{2}(\partial \psi)^{2}+\frac{3}{4} \psi^{2}\right) .
$$

Claim: there is a line of Lifshitz fixed points in the IR with

$$
z_{*}=1+\frac{D}{8}, \quad \theta_{*}=0 .
$$

Idea: similar to QFT, naive perturbation theory suggests:

$$
g_{t t} \sim-\frac{1}{r^{2}}-\frac{D}{4} \frac{\log r}{r^{2}}+\cdots
$$

which should be resummed to give Lifshitz exponent z_{*}.
[Hartnoll, Santos; Phys. Rev. Lett. 112231601 (2014)]

Random-field disorder

However, in the Lifshitz geometry, use $m^{2}=-\frac{3}{4}$ to find:
[Ganesan, Lucas; JHEP 06023 (2020)]

$$
\Delta_{*} \approx \frac{3}{2}+\frac{3 D}{16}>\Delta_{\text {marginal }}=\frac{3}{2}+\frac{D}{8} .
$$

However, in the Lifshitz geometry, use $m^{2}=-\frac{3}{4}$ to find:
[Ganesan, Lucas; JHEP 06023 (2020)]

$$
\Delta_{*} \approx \frac{3}{2}+\frac{3 D}{16}>\Delta_{\text {marginal }}=\frac{3}{2}+\frac{D}{8}
$$

A more careful analysis shows that disorder is marginally irrelevant: [Ganesan, Lucas, Radzihovsky; Phys. Rev. D105 066016 (2022)] [Huang, Sachdev, Lucas; Phys. Rev. Lett. 131141601 (2023)]

$$
\frac{\mathrm{d} D(E)}{\mathrm{d} \log E}=\beta_{D}=D^{2} \frac{d C_{\mathcal{O O T}}}{C_{T T}}=\frac{D^{2}}{8} .
$$

However, in the Lifshitz geometry, use $m^{2}=-\frac{3}{4}$ to find:
[Ganesan, Lucas; JHEP 06023 (2020)]

$$
\Delta_{*} \approx \frac{3}{2}+\frac{3 D}{16}>\Delta_{\text {marginal }}=\frac{3}{2}+\frac{D}{8}
$$

A more careful analysis shows that disorder is marginally irrelevant: [Ganesan, Lucas, Radzihovsky; Phys. Rev. D105 066016 (2022)] [Huang, Sachdev, Lucas; Phys. Rev. Lett. 131141601 (2023)]

$$
\frac{\mathrm{d} D(E)}{\mathrm{d} \log E}=\beta_{D}=D^{2} \frac{d C_{\mathcal{O O T}}}{C_{T T}}=\frac{D^{2}}{8} .
$$

Deviation from Lifshitz scaling visible at energy scale

$$
E_{\mathrm{IR}}=\Lambda_{\mathrm{UV}} \mathrm{e}^{-c / D}
$$

and requires non-perturbative resummation of bulk geometry.

Random-field disorder

Now consider weakly Harris-relevant disorder: $[D]=2 \nu$,

$$
\beta_{D}=-2 \nu D+D^{2} \frac{d C_{\mathcal{O O} T}}{C_{T T}} .
$$

There is now a flow to a fixed point at

$$
D_{*}=\frac{2 \nu}{d} \frac{C_{T T}}{C_{\mathcal{O O T}}} .
$$

Random-field disorder

Now consider weakly Harris-relevant disorder: $[D]=2 \nu$,

$$
\beta_{D}=-2 \nu D+D^{2} \frac{d C_{\mathcal{O O} T}}{C_{T T}} .
$$

There is now a flow to a fixed point at

$$
D_{*}=\frac{2 \nu}{d} \frac{C_{T T}}{C_{\mathcal{O O T}}} .
$$

The resulting theory has Lifshitz scaling:

$$
z_{*}=1+\frac{2 \nu}{d},
$$

and is a stable, strongly coupled, disordered fixed point!

Random-field disorder

Now consider weakly Harris-relevant disorder: $[D]=2 \nu$,

$$
\beta_{D}=-2 \nu D+D^{2} \frac{d C_{\mathcal{O O} T}}{C_{T T}} .
$$

There is now a flow to a fixed point at

$$
D_{*}=\frac{2 \nu}{d} \frac{C_{T T}}{C_{\mathcal{O O T}}} .
$$

The resulting theory has Lifshitz scaling:

$$
z_{*}=1+\frac{2 \nu}{d},
$$

and is a stable, strongly coupled, disordered fixed point!

Construction generalizes to charged, non-relativistic models!
[Huang, Sachdev, Lucas; Phys. Rev. Lett. 131141601 (2023)]

