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Penrose conformal compactification of Minkowski
space

The Minkowski metric reads, in spherical coordinates,

dΣ2 =−dt2 +dr2 + r2dΩ2 (1.1)

with
dΩ2 = dθ2 + sin2θdϕ2 (1.2)

( −∞< t <∞, 0 ≤ r <∞). Each point in the (t,r)-plane with r > 0 is a
2-sphere of radius r. The Penrose diagram is obtained by first defining
the null coordinates

u = t − r, v = t + r, v ≥ u (1.3)

in terms of which the metric takes the form

dΣ2 =−dudv+ 1

4
(v−u)2 dΩ2 (1.4)
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Penrose conformal compactification of Minkowski
space

We now redefine u and v so as to bring infinity to finite coordinate
values. This is done as follows,

u = tanp, v = tanq, −π
2
< p ≤ q < π

2
(1.5)

so that

dΣ2 = 1

4

1

cos2 p

1

cos2 q

[−4dpdq+ sin2(q−p)dΩ2] , (1.6)

and then introduce
T = q+p, R = q−p, (1.7)

with −π< T −R ≤ T +R <π, i.e., |T | <π, 0 ≤ R, R <π−T , R <π+T
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Penrose conformal compactification of Minkowski
space

This yields
dΣ2 =Ψ−2dΣ̄2, Ψ2 = 4 cos2 p cos2 q (1.8)

with
dΣ̄2 =−dT 2 +dR2 + sin2 RdΩ2 (1.9)

While the original Minkowski metric dΣ2 blows up at the boundaries,
the conformally rescaled metric dΣ̄2 is regular there and can be
extended to T −R =−π and T +R =π.
This spacetime with the boundary included is called the conformal
completion of Minkowski space.
It is depicted by a “Penrose diagram”, in which the angular variables
are traditionnally suppressed. Light rays are at 45 degrees since the
(t,r) and (T ,R) coordinates are related by a conformal transformation.
Causality relations are therefore easy to determine.
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Penrose diagram of Minkowski space

i0•

i−
•

i+•

r = 0

I +

I −
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Penrose diagram of Minkowski space

The boundary can be subdivided into the following regions :

i0, called “spatial infinity” is defined by T = 0, R =π ; it is a single
point (South Pole at T = 0).

i+, called “future timelike infinity” is defined by T =π, R = 0 ; it is
also a single point.

i−, called “past timelike infinity” is defined by T =−π, R = 0 ; it is
again a single point.

I +, called “future null infinity” is defined by T =π−R, with
0 < R <π ; it is a cylinder (topology R×S2).

I −, called “past null infinity” is defined by T =−π+R, with
0 < R <π ; it is also a cylinder.
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Penrose diagram of Minkowski space

The reasons for the above terminology are as follows : (i) All spacelike
geodesics end at i0. (ii) All timelike geodesics start at i− and end at i+.
(iii) All null geodesics start at I − and end at I +. In our case, the
geodesics are of course just straight lines and the above assertions are
easily verified by going through the successive coordinate
transformations leading from (t,r) to (T ,R).
The spacelike hyperplanes all reach i0 and are clearly Cauchy
hypersurfaces. For instance, the hyperplane t = 0 corresponds to
T = 0. In the (T ,R) plane, it projects on the lower red line drawn in the
figure. Its induced metric is dR2 +sin2 RdΩ2. Its conformal completion
is topologically a 3-sphere. If one removes its South Pole i0, one gets
R3.
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Penrose diagram of Minkowski space

We close this subsection by noting that I + and I − are both
cylinders. The metric induced on I + or I − by dΣ̄2 is degenerate and
given by

sin2 RdΩ2, 0 < R <π. (1.10)

The null directions are the light rays emanating from (or reaching) i0.
They have fixed angles and are parametrized by R. One can view I +
as the future light cone of i0 and I − as its past light cone.
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Matching infinities - the problem

In Maxwell theory, one assumes usually the electromagnetic field
to behave at future null infinity as

Fur = F (2)
ur (u,xA)

r2 + F (3)
ur (u,xA)

r3 +O (r−4)

and at past null infinity as

Fvr = F (2)
vr (v,xA)

r2 + F (3)
vr (v,xA)

r3 +O (r−4)

One also assumes the antipodal matching conditions
limu→−∞ F (2)

ur (u,xA) = limv→∞ F (2)
vr (v,−xA) (Strominger)

Can these conditions be justified from “reasonable” initial data ?
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Matching infinities - the problem

In other words, will “reasonable” initial data for the
electromagnetic field on a Cauchy hypersuface

develop into an electromagnetic field that follows the above
behaviour at null infinity and obeys the matching conditions ?

Need to understand what happens at i0,

which is badly represented in the Penrose diagram.
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Scalar field

The question can in fact be asked in the even simpler context of a
massless scalar field in Minkowski space

where one usually assumes at null infinity

φ= φ(1)(u,xA)

r
+ φ(2)(u,xA)

r2 +O (r−3)

Again, does this follow from the initial data ?
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Scalar field

The equation of motion of a massless scalar field is the
Klein-Gordon equation

2φ= 0

It is easy to see that regularity at null infinity is guaranteed for
initial conditions φ(t = 0,x) =φ0(x), ∂0φ(t = 0,x) =ψ0(x) of
compact support.

The idea for proving this property is to reformulate the problem
in the conformal compactification of Minkowski space (see e.g.
Wald’s book “General Relativity”).

Under conformal transformation, dΣ2
Mink =Ψ−2dΣ̃2, the rescaled

scalar field φ̃=Ψ−1φ fulfills the equation 2̃φ̃− 1
6 R̃φ̃= 0

and has also initial conditions of compact support.
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Scalar field

Accordingly, φ̃ is regular in the conformal compactification of
Minkowski space, including at the boundaries, where it is in
particular finite.

Thus, φ=Ψφ̃ goes to zero to the boundaries as

Ψ= 2
(
(1+u2)(1+v2)

)− 1
2

.

More specifically, φ=O (1/λ) as λ→∞ along every null geodesic
and φ=O (1/τ2) as τ→∞ along every timelike geodesic,

where λ and τ denote affine parameters along the geodesics (τ
proper time).

The situation is much more complicated if φ does not have
compact support, as it is appropriate for long-range fields.

This is the situation to which we now turn.
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Scalar field

We will allow a 1
r behaviour at infinity on equal time

hypersurfaces

φ= φ

r
+ φ(1)

r2 +O (r−3)

where we use polar coordinates,

ds2 =−dt2 +dr2 + r2γABdxAdxB .

Here, γABdxAdxB is the metric on the round 2-sphere (in standard
(θ,ϕ)-variables, it reads dθ2 + sin2θdϕ2). The coefficients in the
expansion are allowed to be function of time and of the angles,
e.g., φ=φ(t,xA).

The question is : what is the behaviour at null infinity ?

To answer this question, one needs to integrate the equations of
motion with given initial data on t = 0 (say).
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Hyperbolic coordinates

To compare the asymptotic behaviour of the fields at spatial
infinity with the asymptotic behaviour of the fields at null
infinity, we go to hyperbolic coordinates,

η=
√

−t2 + r2, s = t

r
which cover the region r > |t|.
The inverse transformation reads

t = η sp
1− s2

, r = η 1p
1− s2

.

In hyperbolic coordinates, the Minkowskian metric reads

dη2 +η2habdxadxb, (xa) ≡ (s,xA)

with

habdxadxb =− 1(
1− s2

)2 ds2 + γAB

1− s2 dxAdxB .

.
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Hyperbolic coordinates

i0

i−
•

i+•

r = 0

I +

I −

Hyperbolic coordinates cover the region outside to the light cone of the origin, i.e., the red region (without the boundary).
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Hyperbolic coordinates

The hyperbolic coordinates possess the nice feature of
“resolving” spatial infinity.

Indeed, if one goes to infinity along the spacelike radial straight
line t = ar+b, |a| < 1, one reaches spatial infinity in the limit
r →∞. The hyperbolic coordinates approach the limiting values
η=∞ (which can be brought to a finite value by rescaling if
desired) and s = |a| ∈ (−1,1).

If one then takes the limit s → 1, one reaches the past of future
null infinity “from below”. Similarly, if one takes the limit s →−1,
one reaches the future of past null infinity “from above”.
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Klein-Gordon equation in hyperbolic coordinates

The equation of motion for φ is

∂µ(
p−ggµν∂νφ) = η

p
−h

(
η−1∂η(η3∂ηφ)+DaDaφ

)
= 0,

where Da is the covariant derivative with respect to the metric
hab and Da = habDb.

The slice s = 0 coincides with the Cauchy hyperplane t = 0, on
which η= r.

We therefore assume that the field has the following asymptotic
expansion

φ(η,xa) = ∑
k=0

η−k−1φ(k).
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Klein-Gordon equation in hyperbolic coordinates

The homogeneity of the equation of motion implies that each
order decouples and fulfills

DaDaφ
(k) + (k2 −1)φ(k) = 0,

which can be rewritten as

−(1− s2)∂2
sφ

(k) +DADAφ
(k) + k2 −1

1− s2 φ
(k) = 0.

So, for the free scalar field in hyperbolic coordinates, each order
in the expansion in η−1 fulfills autonomous equations of motion.
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Klein-Gordon equation in hyperbolic coordinates

In order to solve these equations, we develop each of the
unknown functions in spherical harmonics,

φ(k) = (1− s2)
1−k

2
∑
lm
Θ(k)

lm(s)Ylm(xA).

The equation satisfied by the coefficientsΘ(k)
lm is

(1− s2)∂2
sΘ

(k)
lm +2(k−1)s∂sΘ

(k)
lm +

[
l(l+1)−k(k−1)

]
Θ(k)

lm = 0.

To illustrate the behaviour of the solutions, we shall consider only
the cases k = 0 and k = 1. The general discussion can be found in

M. Henneaux and C. Troessaert, “Asymptotic structure of a massless scalar field

and its dual two-form field at spatial infinity,” JHEP 05 (2019), 147

[arXiv :1812.07445 [hep-th]]
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Case k = 0 (φ∼ φ(0)

η
)

For k = 0, the equation reduces to

(1− s2)∂2
sΘ

(0)
lm −2s∂sΘ

(0)
lm + l(l+1)Θ(0)

lm = 0,

which is just the Legendre differential equation.

The general solution is given by

Θ(0)
lm =ΘP(0)

lm P
( 1

2 )

l (s)+ΘQ(0)
lm Q

( 1
2 )

l (s),

in terms of Legendre polynomials P
( 1

2 )

l (s) and Legendre functions

of the second kind Q
( 1

2 )

l (s).
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Case k = 0 (φ∼ φ(0)

η
)

This leads to

φ=∑
l,m
η−1(1− s2)

1
2

[
ΘP(0)

lm P
( 1

2 )

l (s)+ΘQ(0)
lm Q

( 1
2 )

l (s)
]

Ylm(xA).

While the Legendre polynomials are finite as s →±1,

the Legendre functions of the second kind diverge
logarithmically.

One has

Q
( 1

2 )

l (s) = P
( 1

2 )

l (s)Q
( 1

2 )
0 (s)+R

( 1
2 )

l (s)

,

where R
( 1

2 )

l (s) are polynomials of degree l−1

and Q
( 1

2 )
0 (s) = 1

2 log 1+s
1−s .
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l (s)+ΘQ(0)
lm Q

( 1
2 )

l (s)
]

Ylm(xA).

While the Legendre polynomials are finite as s →±1,

the Legendre functions of the second kind diverge
logarithmically.

One has

Q
( 1

2 )

l (s) = P
( 1

2 )

l (s)Q
( 1

2 )
0 (s)+R

( 1
2 )

l (s)

,

where R
( 1

2 )

l (s) are polynomials of degree l−1

and Q
( 1

2 )
0 (s) = 1

2 log 1+s
1−s .
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Parity properties

The parity properties of the functions appearing in the expansion
of φ are important.
One has

P
( 1

2 )

l (−s) = (−1)lP
( 1

2 )

l (s), Q
( 1

2 )

l (−s) = (−1)l+1Q
( 1

2 )

l (s)

With the parity properties Ylm(−xA) = (−1)lYlm(xA) of the
spherical harmonics, one finds the “antipodal parities”

P
( 1

2 )

l (−s)Ylm(−xA) = P
( 1

2 )

l (s)Ylm(xA),

and

Q
( 1

2 )

l (−s)Ylm(−xA) =−Q
( 1

2 )

l (s)Ylm(xA)

on the hyperboloid.
The P-branch is even, the Q-branch is odd.
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Friedrich coordinates

To go to null infinity, we use the coordinates introduced by
Friedrich, which provide a better description of the connection
between spatial infinity and null infinity.

The full description of the passage from I − and I + is somehow
awkward in hyperbolic coordinates because the coordinates s
and η do not provide a good description of null infinity itself.

Indeed, as one tends to null infinity along a radial null geodesics,
e.g., for I +,

t = r+b (b < 0)

one finds that for r →∞, s and η always behave as s → 1 and
η→∞, no matter what the null geodesic is.

The limiting values of (s,η) are always (1,∞) so that the
information about the null geodesic (i.e., b) and where it reaches
I + is lost. This suggests to go to new coordinates that do not
suffer from this limitation.
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Friedrich coordinates

To avoid the above feature, we replace η by ρ defined as

ρ = η(
1− s2) 1

2 , 0 < ρ <∞, −1 < s < 1

In these coordinates, the Minkowskian line element becomes

dΣ2 = ρ2(
1− s2

)2

(
(1− s2)

ρ2 dρ2 +2sρ−1 ds dρ−ds2 +dΩ2
)

and is conformal to the metric

dΣ̃2 = (1− s2)

ρ2 dρ2 +2sρ−1 ds dρ−ds2 +dΩ2.

Spatial infinity is blown up as in hyperbolic coordinates and
characterized by ρ =∞, s ∈ (−1,1), with different boosted
hyperplanes cutting it at different values of s.
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Friedrich coordinates

In that representation, spatial infinity is in fact the timelike
cylinder ρ =∞.

While still located at an infinite distance away in the rescaled
metric dΣ̃2, its induced metric is regular and given by

−ds2 +dΩ2 .

[In the original work of Friedrich, the radial coordinate being
used is χ≡ ρ−1 (denoted ρ in that work) instead of the coordinate
ρ introduced here, so that spatial infinity is the cylinder χ= 0
(with same non-degenerate induced metric in the same rescaled

metric, which reads dΣ̃2 = (1−s2)
χ2 dχ2 −2sχ−1 ds dχ−ds2 +dΩ2).

Spacetime is the outside of this cylinder. With the coordinate ρ
considered here, spacetime is the inside of the cylinder at spatial
infinity.]
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Friedrich coordinates

The coordinate s still behaves as s →+1 (respectively, −1) as one
goes to I + (respectively I −), but the new coordinate ρ assumes
now values that encodes the information on “where” one reaches
I + (respectively I −).

Specifically, for I +, one finds,

ρ→ 2|b| ∈ (0,∞).

Thus, future null infinity I + is given by s = 1, ρ ∈ (0,∞). Similarly,
past null infinity I − is given by s =−1, ρ ∈ (0,∞). The limitation
mentioned in the previous subsection has therefore been
eliminated.

This is illustrated in the next figure.
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i0

i−
•

i+•

r = 0

I +

s = 1, η=+∞, ρ ∈ (0,∞)

I −
s =−1, η=+∞, ρ ∈ (0,∞)

Friedrich coordinates cover the same region as the hyperbolic coordinates, i.e., the region outside to the light cone of the origin (in red). Null

infinity is better described in Friedrich coordinates since different points at null infinity have different coordinates - specifically, ρ ∈ (0,∞)
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Friedrich coordinates

The rescaled metric reduces to the degenerate metric dΩ2 on I +
(s = 1) and I − (s =−1).
The boundaries ρ =∞ of I + (s = 1) and I − (s = 1) are denoted
I+− and I−+ and called the critical surfaces (spheres). They are at
the same time the upper and lower boundaries of the cylinder
representating spatial infinity. Matching conditions connect
limiting values of fields at the critical surfaces.
Note that s = 1, ρ→∞ corresponds to going first to I + (s = 1,
ρ > 0) and then taking the limit to the past of I + (i.e., going to
spatial infinity “from above” along null infinity). Similarly, s =−1,
ρ→∞ corresponds to going first to I − (s =−1, ρ > 0) and then
taking the limit to the future of I − (i.e., going to spatial infinity
“from below” along null infinity). Note also the fact that
increasing ρ corresponds to going to spatial infinity in both cases
- hence to the past for I + and to the future for I −.
Conversely, the limit ρ→∞, s ∈ (−1,1) followed by s → 1
(respectively −1) corresponds to going to future null infinity
(respectively past null infinity) from spatial infinity.
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Going to null infinity

We now express the field φ in Friedrich coordinates.

With ρ = η
p

1− s2, the field φ becomes

φ= (1− s2)
∑
l,m
ρ−1

[
ΘP(0)

lm P
( 1

2 )

l (s)+ΘQ(0)
lm Q

( 1
2 )

l (s)
]

Ylm(xA).

Null infinity is given by the limits s →±1 while keeping ρ and xA

fixed. As all the P’s are bounded and all the Q
( 1

2 )

l ’s diverge only
logarithmically, this general expression for φ goes to zero at null
infinity.

The link with standard retarded null coordinates (u,r) is given by

s = 1+ u

r
, ρ =−2u− u2

r
, 1− s2 =−2u

1

r
+O(r−2)

where we take u < 0 which is relevant to the limit of going to the
past of future null infinity.
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Going to null infinity

Expressing φ in terms of u,r, we get

φ=
(
r−1+O(r−2)

)∑
l,m
Θ

Q(0)
lm

(
P

( 1
2 )

l (1)Q
( 1

2 )
0 (1+u/r)+R

( 1
2 )

l (1)
)

Ylm(xA)

+ 1

r

∑
l,m
ΘP(0)

lm P
( 1

2 )

l (1)Ylm(xA)+O(r−2),

Recalling Q
( 1

2 )
0 (s) = 1

2 log 1+s
1−s ,

one gets

Q
( 1

2 )
0 (1+u/r) = 1

2

(
log(r)+ log2− log(−u)

)
+o(1).

If the Q-branch is non-zero, the scalar field will have a term of the

form logr
r . It is interesting to see that this logarithmic branch in r

is paired with a logarithmic divergence in u for the coefficient of
the 1

r term.
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Null infinity and parity conditions on φ(0)

Null infinity expansions usually assume no ( logr
r )-term.

For this to be the case one must imposeΘQ(0)
lm = 0 for the

integration constants associated with the Q-branch.

This implies

φ=∑
l,m
η−1(1− s2)

1
2ΘP(0)

lm P
( 1

2 )

l (s)Ylm(xA)

and thus φ(−s,−xA) =φ(s,xA), ∂sφ(−s,−xA) =−∂sφ(s,xA).

To eliminate the ( logr
r )-term at null infinity, one must thus

assume that the initial conditions have φ even and ∂0φ odd to
leading order.

We have also the antipodal matching conditions
limu→−∞φ(u,xA) = limv→∞φ(v,−xA) relating the leading orders
on the past boundary of future null infinity and on the future
boundary of past null infinity at the antipodal points.
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Case k = 1 (φ∼ φ(1)

η2 )

For k = 1, the equation satisfied by the coefficientsΘ(1)
lm in an

expansion in spherical harmonics reads

(1− s2)∂2
sΘ

(1)
lm + l(l+1)Θ(1)

lm = 0

The general solution is given by

Θ(1)
0 =ΘP(1)

0 s+ΘQ(1)
0 , (l = 0)

and

Θ(k)
lm = (1− s2)

(
ΘP(1)

lm P
( 3

2 )

l−1(s)+ΘQ(1)
lm Q

( 3
2 )

l−1(s)
)
, (l > 0)

where P
( 3

2 )

l−1(s) are Gegenbauer (or ultraspherical) polynomials

and Q
( 3

2 )

l−1(s) the associated functions of the second kind.
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Case k = 1 (φ∼ φ(1)

η2 )

The polynomials are regular as s →±1 but the Q
( 3

2 )

l−1(s)’s diverge.

For instance ,

Q
( 3

2 )
0 (s) = 1

4

( 1

1− s
− 1

1+ s
− log(1− s)+ log(1+ s)

)
+C

and the higher indexed Q
( 3

2 )
n (s) will have similar divergences,

Q
( 3

2 )
n (s) = P

( 3
2 )

n (s)Q
( 3

2 )
0 (s)+R

( 3
2 )

n (s)(1− s2)−1 (n = l−1)

where R
( 3

2 )
n are polynomials of degree n−1.

One has also

P
( 3

2 )
n (−s) = (−)nP

( 3
2 )

n (s), Q
( 3

2 )
n (−s) = (−)n+1Q

( 3
2 )

n (s).

35 / 39



Connecting null
infinity with

spatial infinity

Marc Henneaux

Prerequisite :
Infinities in
Minkowski space

Introduction

Initial conditions

Hyperbolic
coordinates

Friedrich
coordinates

Matching with
null infinity

Higher orders

Hamiltonian
formulation

Conclusions

Case k = 1 (φ∼ φ(1)

η2 )

The polynomials are regular as s →±1 but the Q
( 3

2 )

l−1(s)’s diverge.

For instance ,

Q
( 3

2 )
0 (s) = 1

4

( 1

1− s
− 1

1+ s
− log(1− s)+ log(1+ s)

)
+C

and the higher indexed Q
( 3

2 )
n (s) will have similar divergences,

Q
( 3

2 )
n (s) = P

( 3
2 )

n (s)Q
( 3

2 )
0 (s)+R

( 3
2 )

n (s)(1− s2)−1 (n = l−1)

where R
( 3

2 )
n are polynomials of degree n−1.

One has also

P
( 3

2 )
n (−s) = (−)nP

( 3
2 )

n (s), Q
( 3

2 )
n (−s) = (−)n+1Q

( 3
2 )

n (s).

35 / 39



Connecting null
infinity with

spatial infinity

Marc Henneaux

Prerequisite :
Infinities in
Minkowski space

Introduction

Initial conditions

Hyperbolic
coordinates

Friedrich
coordinates

Matching with
null infinity

Higher orders

Hamiltonian
formulation

Conclusions

Case k = 1 (φ∼ φ(1)

η2 )

The polynomials are regular as s →±1 but the Q
( 3

2 )

l−1(s)’s diverge.

For instance ,

Q
( 3

2 )
0 (s) = 1

4

( 1

1− s
− 1

1+ s
− log(1− s)+ log(1+ s)

)
+C

and the higher indexed Q
( 3

2 )
n (s) will have similar divergences,

Q
( 3

2 )
n (s) = P

( 3
2 )

n (s)Q
( 3

2 )
0 (s)+R

( 3
2 )

n (s)(1− s2)−1 (n = l−1)

where R
( 3

2 )
n are polynomials of degree n−1.

One has also

P
( 3

2 )
n (−s) = (−)nP

( 3
2 )

n (s), Q
( 3

2 )
n (−s) = (−)n+1Q

( 3
2 )

n (s).

35 / 39



Connecting null
infinity with

spatial infinity

Marc Henneaux

Prerequisite :
Infinities in
Minkowski space

Introduction

Initial conditions

Hyperbolic
coordinates

Friedrich
coordinates

Matching with
null infinity

Higher orders

Hamiltonian
formulation

Conclusions

Case k = 1 (φ∼ φ(1)

η2 )

The polynomials are regular as s →±1 but the Q
( 3

2 )

l−1(s)’s diverge.

For instance ,

Q
( 3

2 )
0 (s) = 1

4

( 1

1− s
− 1

1+ s
− log(1− s)+ log(1+ s)

)
+C

and the higher indexed Q
( 3

2 )
n (s) will have similar divergences,

Q
( 3

2 )
n (s) = P

( 3
2 )

n (s)Q
( 3

2 )
0 (s)+R

( 3
2 )

n (s)(1− s2)−1 (n = l−1)

where R
( 3

2 )
n are polynomials of degree n−1.

One has also

P
( 3

2 )
n (−s) = (−)nP

( 3
2 )

n (s), Q
( 3

2 )
n (−s) = (−)n+1Q

( 3
2 )

n (s).

35 / 39



Connecting null
infinity with

spatial infinity

Marc Henneaux

Prerequisite :
Infinities in
Minkowski space

Introduction

Initial conditions

Hyperbolic
coordinates

Friedrich
coordinates

Matching with
null infinity

Higher orders

Hamiltonian
formulation

Conclusions

Case k = 1 (φ∼ φ(1)

η2 )

The polynomials are regular as s →±1 but the Q
( 3

2 )

l−1(s)’s diverge.

For instance ,

Q
( 3

2 )
0 (s) = 1

4

( 1

1− s
− 1

1+ s
− log(1− s)+ log(1+ s)

)
+C

and the higher indexed Q
( 3

2 )
n (s) will have similar divergences,

Q
( 3

2 )
n (s) = P

( 3
2 )

n (s)Q
( 3

2 )
0 (s)+R

( 3
2 )

n (s)(1− s2)−1 (n = l−1)

where R
( 3

2 )
n are polynomials of degree n−1.

One has also

P
( 3

2 )
n (−s) = (−)nP

( 3
2 )

n (s), Q
( 3

2 )
n (−s) = (−)n+1Q

( 3
2 )

n (s).

35 / 39



Connecting null
infinity with

spatial infinity

Marc Henneaux

Prerequisite :
Infinities in
Minkowski space

Introduction

Initial conditions

Hyperbolic
coordinates

Friedrich
coordinates

Matching with
null infinity

Higher orders

Hamiltonian
formulation

Conclusions

Case k = 1 (φ∼ φ(1)

η2 )

The polynomials are regular as s →±1 but the Q
( 3

2 )

l−1(s)’s diverge.

For instance ,

Q
( 3

2 )
0 (s) = 1

4

( 1

1− s
− 1

1+ s
− log(1− s)+ log(1+ s)

)
+C

and the higher indexed Q
( 3

2 )
n (s) will have similar divergences,

Q
( 3

2 )
n (s) = P

( 3
2 )

n (s)Q
( 3

2 )
0 (s)+R

( 3
2 )

n (s)(1− s2)−1 (n = l−1)

where R
( 3

2 )
n are polynomials of degree n−1.

One has also

P
( 3

2 )
n (−s) = (−)nP

( 3
2 )

n (s), Q
( 3

2 )
n (−s) = (−)n+1Q

( 3
2 )

n (s).

35 / 39



Connecting null
infinity with

spatial infinity

Marc Henneaux

Prerequisite :
Infinities in
Minkowski space

Introduction

Initial conditions

Hyperbolic
coordinates

Friedrich
coordinates

Matching with
null infinity

Higher orders

Hamiltonian
formulation

Conclusions

Case k = 1 (φ∼ φ(1)

η2 )

The polynomials are regular as s →±1 but the Q
( 3

2 )

l−1(s)’s diverge.

For instance ,

Q
( 3

2 )
0 (s) = 1

4

( 1

1− s
− 1

1+ s
− log(1− s)+ log(1+ s)

)
+C

and the higher indexed Q
( 3

2 )
n (s) will have similar divergences,

Q
( 3

2 )
n (s) = P

( 3
2 )

n (s)Q
( 3

2 )
0 (s)+R

( 3
2 )

n (s)(1− s2)−1 (n = l−1)

where R
( 3

2 )
n are polynomials of degree n−1.

One has also

P
( 3

2 )
n (−s) = (−)nP

( 3
2 )

n (s), Q
( 3

2 )
n (−s) = (−)n+1Q

( 3
2 )

n (s).

35 / 39



Connecting null
infinity with

spatial infinity

Marc Henneaux

Prerequisite :
Infinities in
Minkowski space

Introduction

Initial conditions

Hyperbolic
coordinates

Friedrich
coordinates

Matching with
null infinity

Higher orders

Hamiltonian
formulation

Conclusions

Case k = 1 (φ∼ φ(1)

η2 )

The general solution reads

φ= ∑
l>0,m

η−2(1− s2)
[
ΘP(1)

lm P
( 3

2 )

l−1(s)+ΘQ(1)
lm Q

( 3
2 )

l−1(s)
]

Ylm(xA)

+η−2(ΘP(1)
0 s+ΘQ(1)

0 )

In Friedrich coordinates (ρ = η
p

1− s2) ,

φ= ∑
l>0,m

ρ−2(1− s2)2
[
ΘP(1)

lm P
( 3

2 )

l−1(s)+ΘQ(1)
lm Q

( 3
2 )

l−1(s)
]

Ylm(xA)

+(1− s2)ρ−2(ΘP(1)
0 s+ΘQ(1)

0 )

There will be terms in 1
r , logr

r2 , 1
r2 etc
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Case k = 1 (φ∼ φ(1)

η2 )

To leading order

1

ρ2 = 1

(−2u)2

(
1− u

r
+O (r−2)

)
, 1− s2 = −2u

r
+O (r−2)

and so

(1− s2)ρ−2(ΘP(1)
0 s+ΘQ(1)

0 ) → 1

r

1

(−2u)
(ΘP(1)

0 +ΘQ(1)
0 )+O (r−2)

∑
l>0,m

ρ−2(1− s2)2ΘP(1)
lm

P
( 3

2 )
l−1

(s)Ylm(xA) → O (r−2)

∑
l>0,m

ρ−2(1− s2)2Θ
Q(1)
lm

Q
( 3

2 )
l−1

(s)Ylm(xA) → A

r(−2u)
+ B logr

r2
− B log(−u)

r2
+O (r−2)

because (1− s2)Q
( 3

2 )

l−1(s) ∼α+β(1− s) log(1− s) as s → 1.

To eliminate the log-terms, one would need to eliminate the Q-branch.
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Parity conditions and Hamiltonian formulation

The action for a (free) massless scalar field in Hamiltonian form
reads

S[φ,π] =
ˆ

dtd3x

(
πφ̇− 1

2

(
(π)2 + (∇φ)2

))

If one assumes asymptotically

φ= φ

r
+O (r−2), π= π

r2 +O (r−3)

the kinetic term diverges,

unless one imposes parity conditions on the leading orders φ and
π.

One takes φ even and π odd under the antipodal map, in
agreement with the conditions found from a ‘smooth” behaviour
at null infinity.
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Conclusions

One can integrate the initial conditions for a Klein-Gordon field
decaying slowly at infinity

to obtain its expression at future null infinity (and past null
infinity).

In so doing, one generically generates terms of order O (r−1 logr)
which violate the usually assumed smoothness assumptions at
null infinity

unless one imposes parity conditions on the leading order.

The procedure can be extended along the same lines for
electromagnetism and gravity.

One can derive in this way the standard matching conditions.

THANK YOU !
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